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Original Article
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Background: Hepatocellular carcinoma (HCC) is one of the leading indications for liver transplantation 
(LT) however, selection criteria remain controversial. We aimed to identify survival factors and predictors 
for tumour recurrence using machine learning (ML) methods. We also compared ML models to the Cox 
regression model. 
Methods: Thirty pretransplant donor and recipient general and tumour specific parameters were analysed 
from 170 patients who underwent orthotopic liver transplantation for HCC between March 2013 and 
December 2019 at the University Hospital Merkur, Zagreb. Survival rates were calculated using the Kaplan-
Meier method and multivariate analysis was performed using the Cox proportional hazards regression model. 
Data was also processed through Coxnet (a regularized Cox regression model), Random Survival Forest 
(RSF), Survival Support Vector Machine (SVM) and Survival Gradient Boosting models, which included 
pre-processing, variable selection, imputation of missing data, training and cross-validation of the models. 
The cross-validated concordance index (CI) was used as an evaluation metric and to determine the best 
performing model.
Results: Kaplan-Meier curves for 5-year survival time showed survival probability of 80% for recipient 
survival and 82% for graft survival. The 5-year HCC recurrence was observed in 19% of patients. The best 
predictive accuracy was observed in the RSF model with CI of 0.72, followed by the Survival SVM model (CI 
0.70). Overall ML models outperform the Cox regression model with respect to their limitations. Random 
Forest analysis provided several relevant outcome predictors: alpha fetoprotein (AFP), donor C-reactive 
protein (CRP), recipient age and neutrophil to lymphocyte ratio (NLR). Cox multivariate analysis showed 
similarities with RSF models in identifying detrimental variables. Some variables such as donor age and 
number of transarterial chemoembolization treatments (TACE) were pointed out, but these were not 
influential in our RSF model.
Conclusions: Using ML methods in addition to classical statistical analysis, it is possible to develop 
sufficient prognostic models, which, compared to established risk scores, could help us quantify survival 
probability and make changes in organ utilization.
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Introduction

Background

Hepatocellular carcinoma (HCC) is the most common 
primary liver malignant neoplasm and the third leading 
cause of cancer death worldwide. Liver transplantation (LT) 
is an established treatment in selected patients. Tumour size 
and number of lesions determine the acceptability criteria 
for LT. The Milan criteria proposed over 25 years ago are 
still viable and have been shown to provide good survival 
outcomes (>70% survival rate in 5 years, with a recurrence 
rate of <10% to 15%) (1,2). Over time, they were 
challenged with the aim to expand selection criteria and 
the University of California, San Francisco (UCSF) criteria 
emerged (1,3). HCC recurrence after LT is a major concern 
resulting in unsatisfactory outcomes due to continuous 
immunosuppression therapy. Early identification of patients 

at risk for HCC recurrence may lead to increased survival. 

Rationale and knowledge gap

Recent studies pointed out that the morphologic 
characteristics of HCC alone are not sufficient and that 
tumour biology needs to be taken into consideration as well 
(4,5). It is also known that donor-recipient matching is an 
important factor in LT outcomes. To achieve optimal organ 
allocation and patient selection for LT, quantification of 
results and identification of predictors of survival and tumour 
recurrence are necessary (6). The amounts of clinical data are 
ever-increasing and a multidisciplinary approach with data 
scientists is paramount to develop better prognostic scores. 

Objective

The ML approach, in addition to classical statistical 
methods, can be a useful tool in achieving these goals. 
ML methods can help identify complex multidimensional 
and non-linear relationships between donor, recipient and 
tumour-specific parameters (7-10). Survival analysis and 
prediction aim to analyse and predict a continuous variable. 
They differ from traditional regression in that a part of 
analysed data can only be partially observed in the defined 
period of time of the study. Anything that occurs after the 
defined end point of the study is right-censored for the 
study. In survival analysis the problem of right censored 
data is overcome by ML models adapted for survival, 
allowing them to be used in medical research. Random 
Survival Forest (RSF), Survival Support Vector Machine 
(SVM) and Survival Gradient Boosting are good examples 
and are commonly used (11,12). Random Forest consists 
of a large number of decision trees and each tree has an 
output in the form of a binary decision or real value. The 
final output of the whole forest is based on majority voting 
or mean decision of each tree (12,13). Survival SVM is a 
feasible method for a high number of variables, but it does 
not directly provide probability estimates. It inputs subsets 
of patient features into a high-dimensional space which 
is used in the decision process. These points are called 
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support vectors and patient-patient similarity function 
is used for model training (7,12,14). Gradient Boosting 
combines several weak learners into a stronger one, and 
while RSF averages the prediction of independent decision 
trees, boosting models trains predictors consecutively and 
each successive predictor attempts to correct the errors of 
the previous ones (7,12,15). On the other hand, Coxnet, 
a regularized Cox regression model, is a classical Cox 
(proportional hazards) model upgraded with a penalty 
term that regularizes coefficients with little predictive 
value to zero. It can be appealing if coefficients of many 
parameters want to be estimated where the classical Cox 
model falls apart due to potential multicollinearity of the 
dataset. Coxnet can also be seen as a machine learning (ML) 
method (7,12). We present this article in accordance with 
the TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-6469/rc).

Methods

Patients

Data consisting of pretransplant parameters from 170 
adult patients transplanted for HCC were collected in 
the period from March 2013 to December 2019 at the 
University Hospital Merkur, Zagreb. The end point of 
this study and the time of follow up of the patients was 
January 2022. All patients underwent whole liver cadaveric 
transplantation using grafts from Donation after Brain 
Death (DBD) donors. The grafts were procured using 
University of Wisconsin solution with aortic and portal 
flush. The piggy-back technique was used for implantation. 
Standard immunosuppressive regimen included Tacrolimus, 
Mycophenolate Mofetil, and steroids with steroid tapering 
over 3 months. All recipients underwent regular follow-
up visits with surveillance for HCC recurrence using cross 
sectional imaging every 3 months in the first 2 years post-
transplant, and at least every 6 months thereafter. Patients 
with incidentally found HCC as well as retransplanted 
patients were excluded from the study. We also excluded 
three patients with missing tumour burden scores. This 
score is composed of several variables which were missing 
for those patients, and imputation was not considered 
feasible in these cases. All transplanted patients were within 
UCSF criteria (single tumor ≤6.5 cm or ≤3 tumors with the 
largest tumor diameter ≤4.5 cm with a total tumor diameter 
≤8 cm) (1,3). The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). This study 

was reviewed and approved by the Ethics Committee of 
the University Hospital Merkur, Zagreb (No. 03/1-2180). 
All patients signed a general informed consent agreeing to 
the treatment and use of their anonymized clinical data. 
According to national and institutional regulations, special 
written consent is not needed for every particular study 
where anonymized clinical data are used.

Data collection

Data on sex, age, blood type, body mass index (BMI), aetiology 
of liver disease, time of listing and laboratory Model for 
End-Stage Liver Disease (MELD) were collected. Tumour-
specific variables included tumour burden score and alpha 
fetoprotein (AFP) (16-18). Donors’ laboratory findings 
included sodium level, alanine transaminase (ALT), gamma 
– glutamyltransferase (GGT), bilirubin and C-reactive 
protein (CRP). Neutrophil to lymphocyte ratio (NLR) and 
platelet to lymphocyte ratio (PLR) from the recipients’ 
laboratory findings were also collected (19-21). Transarterial 
chemoembolization (TACE) was used as a bridging treatment 
for patients with an expected waiting time for transplant of 
more than three months. Data concerning the administration 
and number of TACE sessions was collected, and no other 
bridging modalities, such as ablations or resections, were 
employed. The Eurotransplant Donor Risk Index (ET-DRI) as 
well as the Balance of Risk score (BAR) were calculated (22,23). 
Upon arrival to the transplant centre, all donor livers undergo 
a frozen section biopsy and the degree of steatosis is assessed 
and classified, as well as the degree of fibrosis and periportal 
inflammation, in order to evaluate the quality of the liver graft. 
Cold ischemia time was recorded with an effort to keep it as 
short as possible. A detailed description of recipient and donor 
characteristics is presented in Table 1 and Table 2.

Outcome

The primary outcome of this study was recurrence-free 
survival which includes death or tumour recurrence, 
whichever occurred first. Secondary endpoints evaluated 
overall and graft survival, as well as whether patients would 
experience HCC recurrence within the study period.

Statistical analysis

Data analysis and ML modelling were performed using 
the Python version 3.9 programming language with open 
source libraries for statistics and ML (pandas, NumPy, scikit-

https://atm.amegroups.com/article/view/10.21037/atm-22-6469/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-6469/rc
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survival, SciPy, Statsmodels, seaborn and lifelines) (11,12). 
Descriptive statistical analysis, including visualization and 
outlier detection, was conducted on the entire dataset. 
Preparation of data for this complex analysis is the first step, 
and while collecting and classifying data is not an issue, 
missing data can eliminate patients from a study. Imputation 
of missing data with substituted values is a recognized 

statistical method. In this analysis, imputation was performed 
via chained regression method and our dataset had <1% of 
missing data (24). Chained regression starts with replacing 
all missing values with the mean values of each column. The 
column to be imputed first is the one containing the least 
amount of missing data, and it is considered a dependent 
variable, while all other columns are independent variables 
(including the columns containing missing values that were 
replaced with mean values). A regression model is then 
used to impute the missing values of the current column, 
and then the process is moved onto the next column. This 

Table 2 Donor and graft characteristics

Variables Value (n=170)

Male sex 139 (81.8)

Age (years) 62.5 [50–72]

BMI (kg/m2) 27 [24.7–28.9]

Anti-Hbc (positive) 22 (12.9)

Sodium (mEq/L) 147 [142–153]

ALT (U/L) 30 [17–64]

GGT (U/L) 38 [21–80]

Bilirubin (mg/dL) 11 [8–16]

CRP (mg/L) 162 [108–207]

AB0

0 65 (38.2)

A 62 (36.5)

B 29 (17.1)

AB 14 (8.2)

Pancreas offered (yes) 24 (14.1)

Cardiac arrest (yes) 29 (17.1)

Steatosis

Negligible (0–5%) 107 (62.9)

Mild (5–30%) 56 (32.9)

Moderate (30–60%) 7 (4.2)

Cold ischemia time (h) 6.9 [5.1–8.7]

ET-DRI 1.8 [1.6–2]

BAR 4 [3–5]

Data are presented as median [interquartile range] or n (%). BMI, 
body mass index; Hbc, hepatitis B core antibody; ALT, alanine 
aminotransferase; GGT, gamma-glutamyl transferase; CRP, 
C-reactive protein; ET-DRI, Eurotransplant Donor Risk Index; 
BAR, Balance of Risk score.

Table 1 Recipient characteristics

Variables Value (n=170)

Male sex 139 (81.8)

Age (years) 62 [58–67]

BMI (kg/m2) 27.4 [24.7–30.5]

lab.MELD 10 [8–13]

AFP (ng/mL) 11 [6–74]

Aetiology

Alcoholic liver disease 81 (47.7)

Hepatitis C virus 41 (24.1)

Other 26 (15.3)

Hepatitis B virus 22 (12.9)

Days on waiting list 23 [8–44]

TACE (yes) 35 (20.6)

Number of TACE treatments

0 137 (80.6)

1 18 (10.6)

2 5 (2.9)

3 7 (4.1)

4 3 (1.8)

NLR 2.2 [1.5–3.5]

PLR 76.6 [55.4–111]

AB0

0 60 (35.3)

A 59 (34.7)

B 30 (17.7)

AB 21 (12.3)

Within Milan criteria 113 (66.5)

Tumour burden score 4.5 [3.1–6.1]

Data are presented as median [interquartile range] or n (%). BMI, 
body mass index; MELD, Model for End-Stage Liver Disease; 
AFP, alpha-fetoprotein; TACE, transarterial chemoembolization; 
NLR, neutrophil to lymphocyte ratio; PLR, platelet to lymphocyte 
ratio.
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was repeated for all columns with missing values up to 10 
times, to ensure that the values obtained by regression 
converged, i.e., stopped changing between iterations (24). In 
order to estimate the impact of each variable on survival, a 
multivariate Cox proportional hazards model was developed 
on the whole dataset, after a non-parametric univariate 
Kaplan-Meier approach. We used a forward selection process 
based on predictive performance concordance index (CI) of 
each individual variable that is fit into the Cox model. The 
best final model, with highest CI, is described by the top 7 
variables, which was selected in a 3-fold cross-validated grid 
search and implemented using the scikit-survival library. The 
final model is built on the whole dataset (11).

Machine learning models

The data were also processed through the Coxnet: the 
elastic net regularized Cox regression model. Regularization 

is a ML procedure that reduces overfitting by controlling 
the growth of coefficients. This is mathematically 
expressed by adding a penalty term to the Cox log partial 
likelihood loss function. This penalty term is multiplied 
by a hyperparameter (alpha) that defines the weight of the 
penalty. When alpha is set to zero, we have a standard Cox 
model. As alpha increases, the coefficients are eventually 
shrunk to zero. Finding the ideal set of features is part of the 
optimization procedure of the hyperparameter alpha. After 
choosing a specific alpha value, we can perform prediction, 
either in terms of a risk score using the corresponding scikit-
survival function or in terms of the survival or cumulative 
hazard function (Figure 1) (11,12). ML modelling was 
comprised from methods adapted for survival analysis on 
censored data. We used RSF, Survival SVM and Survival 
Gradient Boosting models. Random forest is an effective ML 
approach for both classification and regression. This method 
is constructing each tree with a different bootstrap sample 
and selecting diverse features for split criteria at each node. 
The final prediction is determined by aggregating the results 
of individual trees. The depth of trees influences the model’s 
ability to control overfitting. For prediction, a sample is run 
through each tree until reaching a terminal node. At each 
terminal node, data is used to non-parametrically estimate 
survival and cumulative hazard functions with the Kaplan-
Meier and Nelson-Aalen estimators respectively (Figure 2).  
The data were split into 75% for training and 25% for 
testing, with the model based on 1,000 trees (7,8,11,13). 
The standard ML technique SVM can also be extended 
for survival data, as it has the advantage of being able to 
handle complex, non-linear relationships and survival using 
kernel functions. We used both Linear Survival SVM and 
Kernel SVM (with custom kernels) and in both cases, we 
used a cross-validated grid search to determine the optimal 
hyperparameter alpha. The best model was obtained by 
Linear Survival SVM with regression objective (11,14). 
Similar to random forests, gradient boosting is an ensemble-
based ML method based on multiple learners, however, 
the way they are combined is different. The final model is 
obtained by combining multiple “base learners” (predictors) 
that should be simple and slightly better than random 
guessing. The final prediction is the result of an additive 
model, whereby each of the base models sequentially 
improves and “boosts” the overall model. In this study, we 
employed 250 base learners, using the Cox partial likelihood 
as a loss function, with regression trees and component-
wise least-squares as base learners and with 75–25% train-
test split (11,15). The evaluation and selection of the best 
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model were performed based on the 5-fold cross-validated 
CI. Although our final evaluation is performed on the test 
set and the selection of the best model is based on results in 
terms of the CI, it is important to note that a comparison 
between ML methods and classical statistical methods 
using CI alone is a limited view of the results, power, and 
objectives of these methods (11,12). 

Results

Survival

The 1-, 3-, and 5-year post-transplant recurrence-free 

survival rates, as reported in Figure 3, were 78%, 70%, and 
65%, respectively. Kaplan-Meier curves for 1-, 3- and 5-year 
post-transplant recipient survival time showed survival 
probability of 84%, 81%, and 80% respectively (Figure 4). 
Graft 1-, 3-, and 5-year survival time was 82%, 78%, and 
76% respectively (Figure 5). Five-year HCC recurrence was 
observed in 19% of patients. Median follow up time was 
3.6 years. Most recurrences occurred during the first three 
years of follow up. The main outcome of our models was 
recurrence free survival and 65.9% of censored data was 
recorded. Due to a much higher percentage of censored 
data (84.4%) HCC recurrence could not be estimated as a 
separate outcome in this dataset.

Model selection

According to the cross-validated CI, the RSF model 
performed the best (CI 0.72), followed by Survival SVM (CI 
0.70). Overall, ML models outperformed Cox proportional 
hazards model, which had CI 0.52 within the development 
set. Coxnet had CI 0.62 and was also outperformed by 
previously mentioned ML models, although providing 
better score than Survival Gradient Boosting model (CI 
0.60). Models ranked by CI are presented in Table 3.

Variable selection

Regarding feature selection, RSF pointed out several 
parameters: AFP, donor CRP, recipient’s age and NLR 
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Figure 3 Kaplan-Meier curve representing recurrence-free 
survival.

Figure 4 Kaplan-Meier curve representing recipient survival.
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(Figure 6). As previously mentioned, Survival SVM does 
not provide probability estimates and in this analysis did 
not present variable selection. Cox proportional hazards 
model showed some similarity with our best ML model, 
as donor CRP (P<0.001, hazard ratio =1.01, confidence 
interval: 1.0021–1.0084) and AFP (P=0.002, hazard ratio 
=1.0001, confidence interval: 1.0000–1.0002) were shown to 
be detrimental variables in the analysis. Some variables like 
donor age (P=0.002, hazard ratio =0.96, confidence interval: 
0.9416–0.9949) and number of TACE treatments (P=0.001, 
hazard ratio =1.66, confidence interval: 1.1214–2.4433) 
were also pointed out, but not found significant in other 

models. Consistently, Coxnet also showed a lot of similarity 
concerning parameter selection with the RSF model, 
pointing out donor CRP, recipient’s age and NLR as the 
most detrimental variables (Figure 7). Whether patients 
were within Milan criteria or not was not found to be 
significant using this analysis on our dataset. 

Discussion

Key findings

The volume of medical data is increasing on a daily basis 
and the need for a machine-driven way of processing huge 
amounts of data is evident. A multidisciplinary approach by 
clinicians and data scientists may facilitate the development 
of more precise prediction models. ML modelling, 
complementary to traditional statistical analysis, is a way to 
identify complex multidimensional and curvilinear relations 
between various parameters (7). This study has confirmed 
the predictive superiority of ML methods in comparison 
to traditional statistical analysis. We have also shown the 
importance of utilizing and comparing several different ML 
methods due to the specific ways in which they approach 

Table 3 Models ranked by CI

Method CI

Random survival forest 0.72

Survival support vector machine 0.70

Elastic net regularized Cox model 0.62

Survival gradient boosting 0.60

Cox proportional hazards 0.52

CI, concordance index.

0.1032±0.0610 
0.0575±0.0860 
0.0427±0.0641 
0.0316±0.0245 
0.0167±0.0192 
0.0143±0.0153 
0.0128±0.0163 
0.0099±0.0131 
0.0080±0.0129 
0.0075±0.0147 
0.0048±0.0084 
0.0015±0.0071 
0.0006±0.0053 
0.0005±0.0018 

0±0.0000 
0±0.0000 
0±0.0000 

−0.0003±0.0135 
−0.0011±0.0089 
−0.0014±0.0270

AFP 
Donor CRP 
Recipient age 
NLR 
Donor age 
Lab MELD 
PLR 
Cold ischemia time 
Donor sex-male 
ALT >105 UL 
Recipient BMI 
GGT >90 U/L 
Imaging Milan-no 
Number of TACE treatments 
Pancreas offer-no 
TACE-no 
Recipient sex-male 
Bilirubin >50 mg/dL 
Donor cardiac arrest-no 
Graft steatosis

...4 more...

Weight Feature

Figure 6 Random survival forest feature importance with mean 
feature weight and standard deviation. AFP, alpha fetoprotein; CRP, 
C-reactive protein; NLR, neutrophil to lymphocyte ratio; MELD, 
Model for End-Stage Liver Disease; ALT, alanine transaminase; 
BMI, body mass index; GGT, gamma glutamyltransferase; TACE, 
transarterial chemoembolization; PLR, platelet to lymphocyte ratio.

Donor CRP

R-age

NLR

Steatosis

0.00    0.02    0.04    0.06    0.08    0.10    0.12    0.14    0.16
Coefficient

Figure 7 Elastic net regularization—best Cox regression model 
features. CRP, C-reactive protein; R-age, recipient age; NLR, 
neutrophil to lymphocyte ratio.
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data processing. This study has also selected donor CRP 
as the most relevant predictor of recurrence free survival, 
which was not the case in similar studies. However, this 
needs to be confirmed with analysis of larger datasets and 
experience from other centers.

Strengths and limitations

The distinct feature of this study is that it is the first 
prospective analysis of a retrospectively collected dataset 
from our centre and that is a single centre study with 
homogenous management of patients. Using ML methods 
on smaller datasets is challenging, along with the delicacy of 
drawing general conclusions from the results. To maximize 
the number of data, imputation was done for missing 
parameters, excluding as few patients from the study as 
possible. The dataset, with objective parameters, can be 
affected by misclassification bias and any generalization 
of the results needs external validation on larger datasets. 
The major problem in ML is overfitting, which means 
that the model is well-suited to the existing training data, 
but performs poorly when given new, unseen data. To 
avoid biased conclusions, we took several steps to address 
that problem, which is commonly encountered with small 
datasets. First, we inspected the dataset for potential outliers 
which can be influential when there is a low number of an 
observation. We also selected relevant features, performed 
regularization and controlled the depth of tree-based 
models. To make the most of our dataset, we executed cross-
validation (3- and 5-fold) to identify the best hyperparameters 
for all our ML methods. An example of finding the best 
hyperparameter alpha is given in Figure 8. Lastly, we tested 
our final models on a holdout test set, except for all Cox 

models, which was built on the entire dataset.

Comparison with similar studies

Even though ML has existed for decades, it is a relatively new 
concept in medical data analysis and its popularity is currently 
increasing. Comparing the ML approaches to statistical 
methods such as Cox proportional hazards regression is a 
topic often discussed in literature (25-27). Each approach 
has its strengths and weaknesses. ML is algorithmic in its 
nature and it can identify patterns in data through numerous 
iterations to learn the relationships between parameters. As 
opposed to classical statistical modelling no assumptions 
about underlying distributions are made. Statistical analysis 
relies on hypothesis testing, data analysis and explanation 
of the relation between variables, while ML focuses more 
heavily on prediction of unseen data. Learning a model can 
take into account a large number of variables with their 
complex, nonlinear relations, while statistical analysis usually 
focuses on a relatively small number of parameters (25).  
ML is increasingly becoming an invaluable tool for 
evaluation of pre- and post-transplant aspects of cadaveric 
and living-donor liver transplantation. High-performing 
imaging assessments enabled by ML algorithms can provide 
more accurate pathohistological evaluation of graft quality 
and streamline the process of liver segmentation. ML can 
also be used to facilitate timely detection of liver tumours 
in the setting of HCC, as well as predicting post-transplant 
morbidity and mortality with greater accuracy (8,28,29). 
Models predicting waitlist dropout are also reported, bearing 
particular relevance for patients with HCC (30). Transplant 
oncology is a rapidly evolving field, and optimizing 
organ allocation in tumor patients and predicting tumour 
recurrence after transplantation is of great significance 
(8,10,31). Traditional models for patient selection and 
prediction of recurrence in liver transplantation for HCC 
rely on classical statistical methods and may be limited in a 
complex multifactorial setting. Nam et al. developed a model 
(MoRAL-AI) that uses deep neural networks to predict 
the HCC recurrence, taking into account tumour biology, 
as indicated by biomarkers, and imaging-assessed tumour 
size (32). Ivanics et al. conducted a comparative evaluation 
of multiple ML models to develop the Toronto postliver 
transplantation HCC recurrence calculator. Their research 
showed that the Coxnet model had the best metrics and 
outperformed RSF, survival SVM, and neural networks 
(DeepSurv), and demonstrated the importance of exploring 
various ML models on data analysis (7). The application of a 
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Figure 8 Hyperparameter alpha optimization process using 5-fold 
cross-validation for elastic net regularization Cox models.
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ML technique has the potential to make use of retrospective 
data to create more precise prognostic models. However, this 
can also be seen as a disadvantage, depending on the quality 
of the dataset. In comparison to similar studies, our approach 
was to investigate several different ML methods and the Cox 
proportional hazards regression on our dataset. Creating a 
predictive calculator or a score based on a limited number of 
patients from a single center can lead to imprecise outcomes 
due to potential biases. However, identifying predictors of 
survival is important for comparison with experience from 
other centers. External validation of similar studies is needed 
to obtain clinically relevant results.

Explanations of findings

Several variables stood out as having an impact on survival 
and tumour recurrence and some appeared in more than 
one model. The most detrimental variable in all the models 
was donor CRP. CRP is a non-specific acute phase reactant 
associated with various inflammatory diseases, sepsis and 
malignant tumours, that is widely available, inexpensive 
and has been in clinical use for many years. It is synthetized 
in hepatocytes, both in normal and HCC cells, and can 
reflect the degree of local inflammation since it encourages 
proliferation of hepatocytes and promotes HCC growth  
(33-36). Inflammation creates a microenvironment that 
favours DNA damage and neoangiogenesis, thus facilitating 
tumour growth and creating a vicious circle in which tumour 
creates inflammation that helps it develop (37). In literature, 
CRP is described as a prognostic factor of several types 
of cancer-oesophageal squamous cell carcinoma, cervical 
cancer and non-small cell lung cancer (38-40). Elevated CRP 
levels were also found to be predictive of overall survival and 
tumour recurrence in non-transplanted HCC patients after 
liver resection or treatment with locoregional therapies (41).  
Albeit the evidence for influence of cadaveric donor CRP 
on LT is scarce in literature, previous studies have reported 
that an elevated CRP in HCC patients undergoing living 
donor LT is predictive of a poor outcome (42,43). NLR 
as an index has demonstrated its value in infections, 
cardiovascular and inflammatory diseases, and in several 
types of primary and metastatic cancer. The role of NLR 
in HCC has emerged after the observation that sorafenib 
treatment in HCC patients had significantly better survival 
benefit in those with low NLR (19,20,44). It is considered 
that NLR represents the balance between the protumour 
inflammatory status and the antitumour adaptive immunity. 
Increase in NLR is suggestive of an increase in overall 

inflammatory status or a decrease in adaptive immunity. 
Hence inflammation, a stimulating factor in tumour 
microenvironment and a well-known indicator of tumour 
progression, was found important in survival and tumour 
recurrence in our group through two separate variables in 
our analysis. We considered NLR as a continuous variable 
with a reference range according to Forget et al., even 
though the optimal “cut-off point” in clinical settings has 
been debated in literature (45-47). 

AFP is a widely accepted marker with prognostic 
significance in HCC, and also the only tumour marker 
routinely used for prognostication and treatment selection 
of patients with HCC. Even though exact tumour staging 
can only be confirmed after histologic study of the 
explanted liver (tumour size and number, vascular invasion, 
differentiation), AFP is considered to be a representative 
parameter that correlates with vascular invasion, and thus 
can be very predictive of HCC recurrence (48-50). In some 
of the recent studies, it was not determined that AFP is a 
good prognostic marker for patient survival, but the rate 
of tumour recurrence showed a positive correlation with 
elevated AFP values (51,52). In our group, the median value 
of AFP was 11 ng/mL and HCC recurrence was reported in 
19% of patients. Since AFP was found to be significant in 
the RSF model as well as in the Cox proportional hazards 
multivariate analysis, we can conclude that moderate 
elevation of AFP may be associated with increased incidence 
of HCC recurrence. 

The share of elderly people in the general population is 
increasing and so is the age of transplant recipients. The 
elderly tend to have more comorbid conditions that can 
affect postoperative complications and survival (53,54). 
The mean age in our cohort was 62.3±7.1 years which 
supports the claim that LT is successful and feasible in older 
population. Although older age has been highlighted as a 
risk factor in our models, our results suggest that recipients 
should be carefully selected according to their comorbidities 
and that old age alone is not an exclusion factor for LT. 
Identifying other risk factors in combination with age could 
help in optimal patient selection.

Implications and actions needed

Besides previously mentioned and used ML models, 
deep learning with artificial neural networks is a well-
established and popular method that is increasingly used in 
many different professional areas today (8). Unfortunately, 
it was not applicable to our dataset due to the small 
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number of patients (for this method) in our cohort. In 
our opinion, rather than one method replacing the other, 
ML modelling is better considered as complementary to 
classical statistics. The strength of the Cox proportional 
hazard model lies in its interpretable parameter estimates, 
which have a straightforward meaning in terms expected 
hazard rate. Although this model works well with small 
datasets, the feature selection process requires careful 
consideration and expert medical knowledge, and should 
be based on the confidence interval of individual variables 
or statistical significance (P<0.05). ML methods, such 
as we used in this study, offer more flexible alternatives 
for analyzing large, complex, heterogeneous data with a 
nonlinear relationship. They can intrinsically perform 
feature selection providing a list of more influential 
variables without straightforward interpretation. We must 
be cognizant of the different objectives of both ML and 
classical statistical methods. Classical statistics is better 
suited for interpretation and describing the relationships 
between variables and the outcome of survival, while 
ML techniques (e.g., using a holdout test set and cross-
validating hyperparameter search) are focused on creating 
the best possible model for accurate predictions of 
time of event, without intending to explicitly state the 
relationships between variables.

Conclusions

In conclusion, ML methods complementary to classical 
statistical analysis can help in developing prognostic 
models to quantify survival probability with the aim of 
helping clinicians in everyday practice and improving organ 
utilization in transplantation. Also, ML models created on 
large datasets can be compared to established risk scores in 
transplantation medicine and potentially identify risk factors 
in the process.
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