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c-index Table 2: The c-index and
L|\_/er transplant aIIocat!on policies _evolve over time. Our best ranking system, based on GBT, achieved an BAR| 52.2% (_) g:;;a;‘ije‘j’d:t';:g:eg°;n
With no universal algorithm to predict the outcome of average c-index of 64.8%, outperforming traditional BAR ET-DRI| 53206 () | testfolds The cindexes
liver transplantation allocation, donor-recipient and ET-DRI scores that achieve a concordance index of CoxNet| 55.0% (+4.5%) | calculsted on the entir
. . . . . . . ataset. All c-indexes are
matching still relies heavily on the experience of the only 52.2% and 53.2%, respectively. RSF performed similarly SSVM| 54.8% (+ 4.2%) | estimated using Uno's
transplant team of the institution. Machine learning to GBT, while the CoxNet and SSVM models showed inferior RSF| 62.8% (+5.19%) | tmat"
(ML) models, using data collected on-site, could ranking capability. The scores are shown in detail in Table 2 GBT| 64.8% (+5.3%)
offer more reliable and relevant ranking systems and Figure 1. GBT and RSF model nonlinearities and
1 Comparlson tO maore tradltlonal prognOStIC interaCtionS; WhICh iS ||k9|y Why they performed SO We” Uno-Estimated Concordance Index for All Models
SCOres. CoxNet Is linear and does not model nonlinearities or e
interaction, making its relatively low c-index expected. The T
SSVM model can generally handle complex data and a wider
grid search could potentially improve its performance, but it s
was left out due to costly training. E
AlM Interpretation via SHAP values yielded many relevant RSF - |
predictors of survival: recipient and donor age and BMI,
In this work, we test several survival ML donor weight, MELD, donor sodium (Na), donor CRP, B - |
algorithms against the BAR [1] and ET-DRI [2] donor ALT, donor GGT, CIT, and recipient diagnoses (Dx). | | | , |
. . . . - . . pe . 0.4 0.50 0. 0.60 0.6 0.70 0.7
scores to see if a localized ML approach provides a The importance of many variables indicates good utilization of T ancodnce ndex :
more accurate metnc for SurV|Va| predlct|on ava||ab|e data Add|t|0na”y’ SteatOS|S was deemed the MOoOSt Figure 1: A side-by-side boxplot of the c-index of all tested models. The c-
] o ] ] ] ] : . : . . indexes of the BAR and ET-DRI scores are drawn with a dashed and dashed-
pOtenUa”y m|t|gat|ng Iocat|()na| dataSEt Sh|ftS Wh||e |mp0rtant Vanable IN terms Of SHAP Va|ueS, bUt ItS aCtuaI dotted line, respectiv.ely, for visua! comparison. Plus (+) represents the
also leveraging all available variables. The event of importance is disputable due to many missing values. The mean vaue. the relatvely large variance in model performance can partly
interest is overall graft failure, i.e., failure-free survival. SHAP interpretation can be seen in Figure 2.
We use a robust testing framework to obtain
realistic assessments of the concordance index SHAP Values Averaged over Test Folds for the GBT Model gt
. ; Table 1: A short summary of the University Hospital Merkur dataset. Figure 2: A beeswarm
(C-IndEX) Of our ML mOde|S perfOrmanCES We Steatosis . . summary plot of the SHAP
. - - L values of the top 10
Interpret variable importance within the framework. Lyear | 3years | 5vears | Overal R. age influential variables for the
, GBT model. Positive SHAP
Survival Rate | 74.8% 55.2% 20.3% - D. weight ) values imply a negative
[ t vival. Th
Censorship Rate | 15.9% | 39.5% | 64.6% | 71.6% o N E STIiTDcvz;)IE::cr)erCht:st
Survival Median 629 days D o D outer folds and repeatsof
' © the RNCV procedure. The
METHODS bonor | 28€ weight, height, BMI, sex, blood type, anti-HBc, — € missing values ofL;teatosis
bl steatosis, sodium, CRP, ALT, GGT, bilirubin, CIT, ' are shown in grey. RSF has a
variables cardiac arrest, pancreas explantation offer MELD .near-i.denticaI.SHAPplot,
o _ Recipient | age, weight, height, BMI, sex, blood type, MELD, D ALT oo eommfm—- - - L?:l?;:cegnie\iztli\;ilza
24 donor and recipient variables were collected from variables | diagnosis ortance across well-
656 patients who underwent liver tran5p|antation from Missing | steatosis (125), CRP (46), bilirubin (24), XA performing models. AC is
: : values | GGT (8), ALT (2), sodium (2), CIT (2) - . . . . . . Low short for alcoholic cirrhosis.
March 2013 through December 2018 at the University 05 00 05 10 15 20 25 30

SHAP value (impact on model output)

Hospital Merkur (Table 1). We developed a robust
evaluation system and tested several different
models: regularized Cox regression (CoxNet) [3] as a
linear baseline; Random Survival Forest (RSF) [4];
gradient-boosted trees (GBT) [5]; and Survival
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