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c-index

BAR 52.2% ( – )

ET-DRI 53.2% ( – )  

CoxNet 55.0% (± 4.5%)

SSVM 54.8% (± 4.2%)

RSF 62.8% (± 5.1%)

GBT 64.8% (± 5.3%)

Liver transplant allocation policies evolve over time.

With no universal algorithm to predict the outcome of

liver transplantation allocation, donor-recipient

matching still relies heavily on the experience of the

transplant team of the institution. Machine learning

(ML) models, using data collected on-site, could

offer more reliable and relevant ranking systems

in comparison to more traditional prognostic

scores.

In this work, we test several survival ML

algorithms against the BAR [1] and ET-DRI [2]

scores to see if a localized ML approach provides a

more accurate metric for survival prediction,

potentially mitigating locational dataset shifts while

also leveraging all available variables. The event of

interest is overall graft failure, i.e., failure-free survival.

We use a robust testing framework to obtain

realistic assessments of the concordance index

(c-index) of our ML models’ performances. We

interpret variable importance within the framework.

24 donor and recipient variables were collected from

656 patients who underwent liver transplantation from

March 2013 through December 2018 at the University

Hospital Merkur (Table 1). We developed a robust

evaluation system and tested several different

models: regularized Cox regression (CoxNet) [3] as a

linear baseline; Random Survival Forest (RSF) [4];

gradient-boosted trees (GBT) [5]; and Survival

Support Vector Machine (SSVM) [6]. The models

were evaluated using 5 times repeated nested

cross-validation (RNCV), with 10 folds for both outer

and inner CV. Hyperparameters were selected in grid

searches. Before fitting the models, categorical

variables were one-hot encoded, missing values were

imputed using iterative imputation [7], and all

variables were standardized, in that order. Imputation

and standardization were fitted on training data within

the RNCV procedure, avoiding potential bias. The

models were interpreted using Shapley additive

explanations (SHAP) [8]. SHAP values are averaged

across the test sets within the RNCV procedure [9].

As a measure of comparison between models (in all

steps of the procedure), we employed Uno’s c-index

estimator [10], appropriate for the high censorship

rates in our data (72%).

With ML, we can improve upon existing

metrics by creating an interpretable ranking

system that better fits available data. Such

systems can provide superior assistance in

donor-recipient matching while also identifying

relevant risk factors. The benefits of using ML

models trained on local data in comparison

to more traditional risk scores are the

potential mitigation of locational dataset

shifts and leveraging of all available

variables. However, this requires that a hospital

gathers significant amounts of data, and the

interpretation of models is less straightforward.

Moreover, the c-index, while most often used in

survival ML literature, is not without flaws. We

aim to address these issues in future work.
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Our best ranking system, based on GBT, achieved an

average c-index of 64.8%, outperforming traditional BAR

and ET-DRI scores that achieve a concordance index of

only 52.2% and 53.2%, respectively. RSF performed similarly

to GBT, while the CoxNet and SSVM models showed inferior

ranking capability. The scores are shown in detail in Table 2

and Figure 1. GBT and RSF model nonlinearities and

interactions, which is likely why they performed so well.

CoxNet is linear and does not model nonlinearities or

interaction, making its relatively low c-index expected. The

SSVM model can generally handle complex data and a wider

grid search could potentially improve its performance, but it

was left out due to costly training.

Interpretation via SHAP values yielded many relevant

predictors of survival: recipient and donor age and BMI,

donor weight, MELD, donor sodium (Na), donor CRP,

donor ALT, donor GGT, CIT, and recipient diagnoses (Dx).

The importance of many variables indicates good utilization of

available data. Additionally, steatosis was deemed the most

important variable in terms of SHAP values, but its actual

importance is disputable due to many missing values. The

SHAP interpretation can be seen in Figure 2.

Figure 1: A side-by-side boxplot of the c-index of all tested models. The c-
indexes of the BAR and ET-DRI scores are drawn with a dashed and dashed-
dotted line, respectively, for visual comparison. Plus (+) represents the
mean value. The relatively large variance in model performance can partly
be attributed to small test sets.
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Figure 2: A beeswarm 
summary plot of the SHAP 
values of the top 10 
influential variables for the 
GBT model. Positive SHAP 
values imply a negative 
impact on survival. The 
SHAP values of each test 
sample are averaged across 
outer folds and repeats of 
the RNCV procedure. The 
missing values of steatosis 
are shown in grey. RSF has a 
near-identical SHAP plot, 
implying relatively 
consistent variable 
importance across well-
performing models. AC is 
short for alcoholic cirrhosis.

Table 2: The c-index and 
its standard deviation for 
each model,  estimated on 
test folds. The c-indexes
for BAR and ET-DRI are 
calculated on the entire 
dataset. All c-indexes are 
estimated using Uno’s 
estimator.

Table 1: A short summary of the University Hospital Merkur dataset.

1 year 3 years 5 years Overall

Survival Rate 74.8% 55.2% 20.3% –

Censorship Rate 15.9% 39.5% 64.6% 71.6%

Survival Median 629 days

Donor
variables

age, weight, height, BMI,  sex, blood type,  anti-HBc, 
steatosis, sodium, CRP, ALT, GGT, bilirubin, CIT, 
cardiac arrest, pancreas explantation offer

Recipient 
variables

age, weight, height, BMI, sex, blood type, MELD, 
diagnosis

Missing
values

steatosis (125), CRP (46), bilirubin (24),
GGT (8), ALT (2), sodium (2), CIT (2)  
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