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Abstract 

Due to its capability for high-throughput screening 1H nuclear magnetic resonance (NMR) 

spectroscopy is commonly used for metabolite research. The key problem in 1H NMR 

spectroscopy of multicomponent mixtures is overlapping of component signals and that is 

increasing with the number of components, their complexity and structural similarity. It makes 

metabolic profiling, that is carried out through matching acquired spectra with metabolites from 

the library, a hard problem. Here, we propose a method for nonlinear blind separation of highly 

correlated components spectra from a single 1H NMR mixture spectra. The method transforms a 

single nonlinear mixture into multiple high-dimensional reproducible kernel Hilbert Spaces 

(mRKHSs). Therein, highly correlated components are separated by sparseness constrained 

nonnegative matrix factorization in each induced RKHS. Afterwards, metabolites are identified 

through comparison of separated components with the library comprised of 160 pure 

components. Thereby, a significant number of them are expected to be related with diabetes type 

2. Conceptually similar methodology for nonlinear blind separation of correlated components 

from two or more mixtures is presented in the Supplementary material. Single-mixture blind 

source separation is exemplified on: (i) annotation of five components spectra separated from 

one 1H NMR model mixture spectra; (ii) annotation of fifty five metabolites separated from one 

1H NMR mixture spectra of urine of subjects with and without diabetes type 2. Arguably, it is for 

the first time a method for blind separation of a large number of components from a single 

nonlinear mixture has been proposed. Moreover, the proposed method pinpoints urinary creatine, 

glutamic acid and 5-hydroxyindoleacetic acid as the most prominent metabolites in samples from 

subjects with diabetes type 2, when compared to healthy controls.  
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1. Introduction 

Metabolic profiling aims to identify and quantify small-molecule analytes (a.k.a. metabolites or 

pure components) present in complex multicomponent mixtures  acquired in drug development 

[1, 2], toxicology studies [3], disease diagnosis [4,5], food, nutrition and environmental sciences 

[6-8]. Because both techniques provide structural information on chemical classes in a single 

analysis, metabolic profiling technologies are mainly based on nuclear magnetic resonance 

(NMR) spectroscopy and mass spectrometry.  NMR spectroscopy is a quantitative, non-

destructive, robust and reliable technique that provides detailed information of structurally 

diverse metabolites. Candidates for biomarkers are obtained through matching acquired spectra 

with those from a library [9], such as the BioMagResBank metabolomics database [10] or Wiley 

1H NMR database [11]. However, because many metabolites are structurally similar, their NMR 

spectra are highly correlated, with many overlapping peaks [12, 8]. That makes metabolic 

profiling a notoriously difficult problem. That is especially true for 1H NMR spectroscopy [9], 

which, due to its capability for high-throughput screening [13], is routinely used for metabolite 

biomarker research. Difficulties related to ambiguous elucidation of the chemical structures are 

caused by 1H-1H J-couplings that generate broad multiplets [14, 8]. Since many metabolites are 

not species dependent, that allows translation of some specific biomarkers from preclinical 

studies directly in clinical studies [15]. Quantitative metabolomic profiling of patients with 

inflammatory bowel disease characterized 44 serum, 37 plasma, and 71 urine metabolites using 
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1H NMR spectroscopy [16]. Therefore, for the present study an in-house library comprised of 

160 1H NMR spectra of pure components is built, whereas many of them are known to be present 

in urine samples of diabetic patients.1  

 The above discussion suggests that computational methods for multivariate analysis of 

complex metabolomic datasets are of utmost importance for extraction of metabolic information, 

sample classification and biomarker discovery, [17, 18, 12, 8]. Thus, the main motivation of this 

paper is: development of a method for blind separation of nonnegative correlated sources from 

single nonlinear mixture. Its capability to separate components from a single mixture makes it of 

potential clinical relevance. The method, through the use of explicit (feature map-based) and 

implicit (kernel-based) nonlinear transforms, maps the original single-mixture blind source 

separation (BSS) problem into new ones in multiple reproducible kernel Hilbert spaces (RKHSs). 

In so doing, the method increases significantly the number of (pseudo)mixtures, while the 

number of new components generated by nonlinear transforms is increased only modestly. That, 

in combination with the sparse distribution of amplitudes of analytes 1H NMR spectra, enables 

approximate separation of highly correlated analytes spectra. That is performed by means of 

sparseness constrained nonnegative matrix factorization (sNMF) in mapping induced RKHSs. 

Afterwards, analytes are annotated through comparison of the separated components with the 

pure components from the library. Conceptually similar methodology for blind separation of 

correlated components from two or more nonlinear mixtures is presented in Supplementary 

material. 

                                                 
1 The reason for building the in-house library was to solve problems associated with annotations of components 
recorded using NMR spectrometers with different magnetic field strengths [17]. That is, 1H NMR spectra of the 
same compound recorded with different spectrometers will have different splitting (J-couplings) and line widths at 
the resonances. When used similarity measures, such as correlation, are not invariant to these shifts that will affect 
annotation accuracy. 



5 

 

 Essential differences between the proposed method and single-mixture nonlinear BSS 

method [19] are: (i) the method [19] maps single mixture spectra onto one RKHS, while the 

method proposed herein maps single mixture spectra onto multiples RKHSs. As it is shown in 

experiments conducted on one model 1H NMR mixture spectra in Section 3.1. as well as two 

model 1H NMR mixtures spectra in Supplement Section S3.1, usage of multiple RKHSs enables 

separation and annotation of more pure components than it is possible from one RKHS only; (ii) 

after sparseness constrained separation in each RKHS, library of in-house recorded pure 

components 1H NMR spectra is used for annotation of separated components. Thus, the proposed 

method is based upon the implicit assumption that the spectral library is rich enough to contain 

pure components that correspond to metabolites expected to be present in mixture spectra.  

 The proposed method is demonstrated based upon two experiments: (i) separation and 

annotation of five correlated components spectra from one model 1H NMR mixture spectra, and 

(ii) separation and annotation of components present in 1H NMR mixtures spectra of urine of 

subjects with and without diabetes type 2. To the best of our knowledge, this is the first 

demonstration of a method for the blind separation of a large number of components from single 

1H NMR nonlinear mixture spectra. Furthermore, the proposed method highlighted urinary 

creatine, glutamic acid and 5-hydroxyindoleacetic acid as the most prominent metabolites in 

samples from subjects with diabetes type 2, when compared to healthy controls.   

 The rest of the paper is organized as follows. Section 2 presents nonlinear mixture models 

of multicomponent 1H NMR spectra, analysis of solvability conditions, nonlinear transformations 

of a single mixture nonlinear BSS problem as well as criteria for evaluation of separation and 

annotation quality. Section 3 describes experiments and materials used for comparative 

performance analysis of methods for nonlinear blind separation of components from model and 
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experimental single 1H NMR spectra. Results related to separation and annotation performance 

of developed algorithm are presented in section 4. Section 5 discusses metabolic interpretation of 

the most prominent metabolites in urine of patients with diabetes type 2. Conclusion is presented 

in section 6. 

 

2. Theory and methods 

2.1 Related and background work 

The linear mixture model (LMM) is commonly used in NMR spectroscopy [20-25]. It is the 

model upon which linear instantaneous BSS methods are based, [21-27]. These methods have 

already been applied successfully for the separation of components from various types of 

spectroscopic mixtures [21-25]. The majority of these algorithms require that the unknown 

number of analytes is less than or equal to the number of mixtures available. That makes them 

inapplicable for the analysis of complex mixtures spectra. Sparseness-based approaches to BSS 

are presently a highly active research area in signal processing. They enable separation of more 

analytes than mixtures available [23-25]. Sparseness implies that at each chemical shift 

coordinate only a small number of analytes is present. However, the majority of these algorithms 

require that each analyte is present alone at certain chemical shift region [23-27]. In case of 1H 

NMR spectroscopy, due to the complexity of mixtures, it is impossible to satisfy this assumption. 

Furthermore, sparseness and nonnegativity constrained blind separation of analytes from 

mixtures of 1H NMR spectra is additionally limited by the assumption that the 1H NMR spectrum 

is a linear mixture of analytes spectra. That is true for chemical shifts where only one analyte is 

present. Otherwise, the spectrum of the mixture becomes more nonlinear when the complexity of 
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the mixture grows, i.e. when the number of overlapping peaks increases [28].2 Compared with 

the method proposed herein, existing nonlinear BSS methods assume the availability of multiple 

nonlinear mixtures [29-42]. 

 Algorithms for single-mixture BSS must first transform the single- to the pseudo multi-

mixture BSS problem [43-53]. Subsequently, some existing multivariate algorithms are used to 

perform BSS from pseudo-mixtures. We use an approximate explicit feature map (aEFM) for 

observation-wise nonlinear mapping of the recorded mixture 1H NMR spectra into pseudo 

mixtures spectra. Afterwards, pseudo mixture data are mapped observation-wise in multiple 

high-dimensional RKHSs using empirical kernel maps (EKM) [54]. The proposed single-mixture 

nonlinear BSS algorithm differs from the existing single-mixture BSS algorithms in the 

following aspects: (i) algorithms [43-53] address the linear BSS problem, while the proposed 

method addresses the nonlinear BSS problem, and (ii) the hard constraints imposed on the source 

signals by single-mixture BSS algorithms [43-53] do not apply to the pure component 1H NMR 

amplitude spectra that are of interest in this study. This statement is supported through the 

following analysis. The method [43] assumes that the source signals have disjoint support. The 

method [44] partitions single-channel time series to yield a pseudo multichannel mixture, to 

which an independent component analysis algorithm was applied to extract the sources. The 

disjoint support assumption does not hold for overlapping pure components 1H NMR amplitude 

spectra. The algorithm [45] uses empirical mode decomposition to decompose the single-channel 

mixture into intrinsic mode functions that represent the pseudo multichannel mixture. For 

                                                 
2 The reason for formulating single mixture BSS problem in amplitude spectra domain, where mixture is nonlinear, 
instead of time domain, where mixture is linear, is much higher degree of overlap between components. That occurs 
because time domain NMR signals are not sparse. Please see [24] for the more in depth discussion of this issue. As 
discussed in Section 2.3, degree of the components overlap at independent variable (chemical shift in the present 
paper) is one of the key factors that enables (or disables) solvability of the related underdetermined BSS problem.  
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separation by independent component analysis algorithms, sources of interest are required to be 

intrinsic mode functions, what is not true for the pure components 1H NMR amplitude spectra. In 

[46], the wavelet transform is used to generate a pseudo multichannel mixture from a single-

channel version. In this way, the mother wavelet has to be non-orthogonal and has to match the 

shapes to the sources of interest. The Morlet wavelet was used in [46], but other non-orthogonal 

wavelets can be used as well. Thus, this method is applicable to separation of the specific source 

signals, such as vibration signals [46, 47]. Many of the single-channel BSS algorithms are 

derived to separate acoustic signals by factorizing a nonnegative spectrogram [48-53].  

 

2.2 Nonlinear mixture model of multicomponent 1H NMR spectra  

 NMR signals are intrinsically time domain harmonic signals with amplitude decaying 

exponentially with some time constant. Thus, LMM applies to either time domain or Fourier 

transform domain representations. The model in the Fourier (chemical shift) domain in the 

absence of additive noise reads out as: 

 

  =X AS          (1) 

 

where { }1

1
: ( )

NN T T
n n n

FT× ×

=
∈ = = ∈X X x   represents mixture matrix such that each row of X 

contains one complex 1H NMR mixture signal and   stands for the set of complex numbers. Xn 

is obtained as the Fourier transform (FT) of the time domain equivalent xn, comprised of 
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complex values at T chemical shift instants, and symbol " =:" means "by definition". 

{ }10 0 1
:

MN M N
m m

× ×
+ + =

∈ = ∈A a   represents a mixture matrix, whereas each column represents a 

concentration profile of one of the M analytes across the N mixtures, and 0+  denotes a set of 

nonnegative real numbers. { }1

1
: ( )

MM T T
m m m

FT× ×

=
∈ = = ∈S S s   is a matrix with the rows 

representing 1H NMR complex signals of the analytes present in the mixture signals X. However, 

as shown in [28], amplitudes of the NMR mixture spectra, { }1
0 0 1

:
NN T T

n n

× ×
+ + =

∈ = ∈X X  ,  are 

nonlinear mixtures of the amplitudes of the components NMR spectra, 

{ }0 0 1
:

MM T m T
m m

× ×
+ + =

∈ = ∈S S  .  Thus, instead of LMM (1) we assume nonlinear mixture model 

(NMM) for 1H NMR amplitude spectra: 

 

  ( )=X f S           (2) 

 

where 0 0: M N
+ +→f    stands for an unknown nonlinear mapping ( ) ( ) ( )1: ...

T

Nf f =  f S S S  

acting observation-wise. We also assume { }1
0 0 1

T
M

t
t

K×
+

=
∈ ≤S  . Here 

0tS  is indicator function 

that counts number of non-zero entries of tS  and K denotes maximal number of sources that can 

be present at any observation coordinate t. The nonlinear BSS problem (2) implies that the 

amplitude spectra of pure components S  ought to be inferred from the mixture amplitude 1H 
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NMR spectra X  only. Since the nonlinear BSS method that will be developed herein is aimed to 

be used for metabolic profiling we assume: 

 

 A1) N≥1 

 A2) M>N 

 

Thus, the nonlinear BSS problem (2) is underdetermined. In particular, we are interested in 

clinically most relevant case of a single mixture, i.e. N=1. Since the peaks in amplitude spectra 

are not statistically related, the pure components are treated as independent and identically 

distributed (i.i.d.) random variables. Hence, we propose a method for blind separation of 

mutually dependent but individually i.i.d. nonnegative pure components from one nonlinear 

mixture. To the best of our knowledge, existing methods cannot address the nonlinear BSS 

problem under the assumed scenario.  

 

2.3 Solvability of underdetermined nonlinear system and sparse probabilistic model of 1H NMR 

components spectra 

We further assume the following: 

 A3) 0 1 1,..., 1,..., ,mt m M t T≤ < ∀ = =S  
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 A4) mtS  is i.i.d. random variable that obeys truncated exponential distribution on  (0, 1]  

 interval and discrete distribution at zero, see Eq. (3), 

 A5) Components of the vector-valued function ( ) ( ) ( )1: ...
T

Nf f =  f S S S are  

 differentiable up to second-order. 

 

Assumptions A3 to A5 are shown in [58] to be relevant for separation of pure components from 

nonlinear mixtures of mass spectra. They also hold for separation of pure components from 

amplitude 1H NMR spectra, whereas A4 is confirmed below. To be useful, the solution of any 

BSS problem is expected to be unique up to the scaling and permutation indeterminacy. That is 

referred to in BSS as essential uniqueness [55]. However, even for the linear underdetermined 

BSS problem hard (sparseness) constraints ought to be imposed on pure components [56, 57, 58, 

19] to obtain an essentially unique solution. The quality of separation depends heavily on the 

degree of sparseness, i.e. the value of K. To make the nonlinear underdetermined BSS problem 

tractable we assume, as in [57], that amplitudes of the source signals comply with the sparse 

probabilistic model [56]: 

 

 ( ) ( ) ( ) ( )*( ) 1 1,..., and 1,...mt m mt m mt mtp g m M t T= ρ δ + −ρ δ ∀ = ∀ =S S S S     (3) 

 

where ( )mtδ S  is delta function and ( ) ( )* 1mt mtδ = −δS S  is its complementary function. 

( )( ) 0m mt mtPρ = =S S .  Hence, ( )0 1mt mP ρ> = −S .  Sparse probabilistic model (3) is justified 

through the following analysis. We assume that the 1H NMR components spectra comply with 
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the sparse probabilistic model represented by the truncated exponential distribution on interval 

(0, 1]: 

  

 ( ) ( ) ( )1 expmt m mt mg = −S Sµ µ  ∀m=1,..., M      (4). 

 

First, the library of 160 pure components amplitude spectra are, according to A3, scaled to [0, 1] 

interval. We performed a  maximum likelihood based fitting, using MATLAB function 

fitdist,  of the exponential distribution (4) to the experimental analytes 1H NMR amplitude 

spectra and obtained  [ ]ˆ 0.001206,0.002338mµ ∈ , 1,...,160m = . This result implies that, due to 

the small value of µm, there is virtually no difference on (0, 1] interval between probability 

density function (pdf) of the truncated exponential distribution and pdf of the exponential 

distribution. For the exponential prior (4) with given µm and given probability p(0< mtS ≤s) the 

value of s  is obtained as: s≈-µmln(1-p).  For p=0.99 and µm=0.002338 it follows s=0.0108. We 

also estimated mρ  in (3). For each pure component spectra we counted chemical shifts where the 

amplitude value was at least a hundred times smaller than the maximal value in the library. The 

obtained number was divided by the length of the amplitude spectra. We obtained the following 

result: [ ]ˆ 0.9581,0.9954mρ ∈ , 1,...,160m = . Thus, in probability the 1H NMR components spectra 

are sparse and will have very small values. Hence, even though 1H NMR spectra are not 

inherently sparse, as opposed to mass spectra, they comply with the sparse probabilistic model 

(3). That justifies cancellation of the higher order terms (HOT) in the nonlinear transform that 



13 

 

follows. Under the sparse probabilistic prior (3)/(4) the nonlinear mixture model (2) simplifies to 

[58]: 

 

 

{ } { }

2
21

1

21
2(1)2

, 1
, 1

... ...

... ...

M
M

M
M

i j i j i j i j

HOT HOT

=
=

 
   
   
   
   
 = + + = + 
   
   
   
    

 

S
S S

X J S H S B S

S S S S

   (5) 

 

where J stands for the Jacobian matrix, H(1) stands for the mode-1 unfolded third-order Hessian 

tensor and 1
(1)2 =  B J H  stands for overall mixing matrix. Since the original nonlinear problem 

(2) is underdetermined the equivalent linear problem (5) is even more underdetermined. That is, 

the problem (5) is comprised of the same number of mixtures, N, but has the P=2M + M(M-1)/2 

dependent sources. When the degree of sources overlap in (2) is K, the degree of overlap of new 

sources in (5) is Q≈2K + K(K-1)/2. The uniqueness of the solution of (5) depends on the triplet 

(N, P, Q). For deterministic mixing matrix B, the necessary condition for uniqueness is N=O(Q2) 

[59]. Thus, it becomes virtually impossible to obtain an essentially unique solution of the 

underdetermined nonlinear BSS problem (5) with overlapped sources. Separation quality can 

however, be increased through nonlinear mapping of mixture data: 

 

   ( ){ }1 1
0 0 1

TN N
t t t

× ×
+ + =

∈ → φ ∈X X        (6) 
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where EFM ( )tφ X  maps data into, in principle, infinite dimensional space. To make 

calculations in mapped space computationally tractable, ( ) ( ){ }
1

:
T

t t=
φ = φX X needs to be 

projected to a low-dimensional subspace of induced space spanned by ( ) ( ){ } 1
:

D
d d=

φ = φV v . The 

projection known as EKM, see definition 2.15 in [54], maps data from the input space onto 

RKHS:  

 

  ( ) ( ) ( ) ( ), ,TΨ = φ φ = ΚX V V X X V       (7)  

 

where ( ) 0, D T×
+Κ ∈X V   denotes Gram or kernel matrix with the elements 

( ) ( ) ( ){ } ,

, 1
,

D TT
t d d t

d t=
κ = φ φX v v X . It is shown in [58] that under sparse probabilistic prior 

(3)/(4), Eq.(7) becomes: 

 

  ( )
{ }

1

, 1

,
T

M

i j i j

HOT
×

=

 
 
 Ψ = + 
 
  

0
X V G S

S S

      (8) 

 

where G denotes a nonnegative mixing matrix of appropriate dimensions and 01×T stands for row 

vector of zeros. The uniqueness condition for system (8) becomes: D=O(Q2), [59]. For D>>N the 

uniqueness condition can be fulfilled with greater probability than the uniqueness condition for 
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system (5): N=O(Q2). Thus, the role of the EKM-based mapping is to "increase the number of 1H 

NMR mixture spectra". However, due to the Lorentzian shape of the pure NMR peak, K will be 

greater than it is the case with mass spectra. Therefore, the role of the EKM-based mapping is 

even more important than it is for the case with the mass spectra mixtures [19]. In particular, that 

is the main reason why nonlinear blind separation of pure components from single 1H NMR 

mixture spectra has to be performed in multiple RKHSs, as opposed to [19] where only one 

RKHS was used. 

 

2.4 Nonlinear transformation of the original single mixture nonlinear BSS problem   

Algorithms for single-mixture BSS first have to transform single- to pseudo multi-mixture BSS 

problem [43-53].  For the single-mixture case, EFM (6) reduces to [19]: 

 

   ( ){ }10 0 1
1,.., .

TN
t i t t

i I×
+ + =

∈ → φ ∈ ∀ =X X      (9) 

 

It is seen from (9) that single mixture data tX  is mapped onto I >1 spaces. To obtain pseudo 

multi-mixture data, EFM ( )i tφ X  has to satisfy two conditions: (i) it has to be of finite order and 

(ii) it has to have analytic form. Hence, we provide in (10) an analytic expressions for EFM 

obtained by factorization of the Gaussian kernel that, with the slight abuse of notation, is given 
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with: ( )( ) ( )( )2

2
, expt tκ δ δ σ= − −X v X v , where δt denotes chemical shift. The aEFM is 

obtained as: 

 

 ( )
2
2

2 2
2

2 2 2 1e 1 ... 1,...,
!

and 1,..., .

t

i

i

T
d

dd
t t t td

i i i

t T
d

i I

σφ
σ σ σ

−  
= ∀ = 

  
∀ =

X

X X X X (10) 

To simplify notation we have substituted in (10) the chemical shift δt with the index t. For 0≤d<∞ 

(10) represents the aEFM of order d. Hence, for mapping associated with RKHS induced with the 

Gaussian kernel instead of (9) we use: 

 

   ( ){ }( 1) 1
0 0 1

1,..., .
Td d

t i t t
i I+ ×

+ + =
∈ → φ ∈ ∀ =X X      (11) 

 

The best results reported in the experimental section 4.1 for single mixture case, as well as in 

Tables S-68 to S-70 in Supplementary material for two-mixtures case, were obtained for order of 

aEFM d=2. Thus, single-mixture 
0

1 T
+

×∈X   is mapped into pseudo multi-mixture according to: 

 

   ( )
0

1 2 3
0 1,..., .T T

i i I
+

× ×
+∈ → φ ∈ ∀ =X X       (12) 
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Before mapping ( )2
iφ X  into RKHS we need to introduce the EKM. To increase the probability 

of separation of highly correlated analytes from 1H NMR spectra, the number of pseudo-mixture 

spectra in (12) has to be increased to D>>3. For this purpose the nonlinear mapping, known as 

EKM, 3
0 0: D
+ +Ψ →   was proposed in (7)/(8). The mapping is performed chemical shift-wise: 

 

    ( )( ) ( )( ){ }2 3
0 0 1

, 1,...,
i

T
D

i t t i t
i Iκφ δ δ+ +

=
∈ Ψ ∈ ∀ =X X V     (13) 

 

where:  

 

   ( )
( )( ) ( )( )

( )( ) ( )( )

1 1( ) 1( )

1 ( ) ( )

, ... ,

, ... ... ... 1,..., .

, ... ,
i

i i i T i

i

i D i i T D i

i Iκ

κ δ κ δ

κ δ κ δ

 
 
 Ψ = ∀ =
 
  

X v X v

X V

X v X v

 (14) 

 

Equations (9) to (14) indicate dependence of mappings ( )2
iφ X  and ( ),

i iκΨ X V on 

corresponding parameters of the chosen kernel iκ .  It is, in principle, unclear how to select both 

the kernel iκ as well as the optimal value of the kernel parameters. In particular, for the Gaussian 

kernel that is used in the present study, it is known that the value of its variance has to be adopted 

to signal-to-noise-ratio (SNR) [60]. If the SNR is low, a large value of σ2 ought to be selected 
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and vice versa. It is, however, hard to know the SNR value in practice. That is why, as opposed 

to [19], we propose herein mapping of the original 1H NMR mixture spectra onto multiple RKHS 

(13). The role of the basis { }1( ) 0 1
:

DN
i d i d

×
+ =

= ∈V v   is to approximately span the induced space: 

 

   ( )( ){ } ( )( ){ }2 2
( ) 11

D T

i d i i t td
span spanφ φ φ φ δ

==
≈v X     (15) 

 

Eq. (15) holds under the assumption: 

 

   ( ){ } ( )( ){ }2 2
( ) 1 1

TD

i d i i td t
span spanφ φ δ

= =
≈v X      (16) 

 

The basis iV  is estimated from ( )2
iφ X  by the k-means clustering algorithm. In the experimental 

sections 4.1 and 4.2, we have used the k-means clustering algorithm, implemented with the 

MATLAB function kmeans, to cluster ( )( ){ }2

1

T

i t t
φ δ

=
X into pre-specified number of D cluster 

centers { }1( ) 0 1

DN
d i d

×
+ =

∈v   that represent the basis matrix Vi. The sNMF algorithm is now ready to 

be applied to ( ),
i iκΨ X V  in (14) to separate analytes 1H NMR spectra through:  

  



19 

 

  { } ( )( )( )2
( , )

1

ˆ , 1,..., .
i

D

m i i i
m

sNMF i Iκ φ
=
= Ψ ∀ =S X V    (17)  

 

By executing sNMF on data mapped into multiple RKHSs and by combining the obtained results 

we can increase the probability of separating correlated 1H NMR component spectra from one 

mixture spectra only. Regarding SNMF algorithm, we have used the nonnegative matrix 

underapproximation  (NMU) algorithm [61] with the MATLAB code freely available [62]. The 

main reason for preferring the NMU algorithm over other sNMF algorithms is that there are no 

sparseness constraint regularization constants that need to be tuned. It is important to notice that 

in (17) the initial number of components to be extracted was set to D even though the expected 

number of components is smaller. That comes as a benefit of using the EKM-based mapping 

which alleviates the difficult problem related to a priori setting of the number of components to 

be separated. That, in general, is a hard problem in computer science with, so far, no algorithm 

agreed to work well on data of diverse origins. Components separated in (17) are compared with 

the pure components spectra stored in the library, { } 1

J
m m=

S  , using normalized correlation 

coefficient as a similarity measure. Separated components are paired with the components from 

the in-house library comprised of J=160 1H NMR spectra of pure components  j*∈{1, ..., J}  

according to : 

 

 
( , )*

1,...,
( , )

ˆ ,
arg max 1,..., 1,..., .ˆ

m i j

j J
m i j

j m D i I
=

= ∀ = ∀ =
S S

S S
    (18) 
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Afterwards, normalized correlation coefficients: 

 

 
*

*

*

( , )

( , , )
( , )

ˆ ,
1,..., 1,...,

ˆ
m i j

m i j
m i j

c m D i I= ∀ = ∀ =
S S

S S
     (19) 

 

are ranked in descending order. Finally, the list is refined by removing from it all the components 

( , )
ˆ

m iS  paired with the same pure component *j
S  with the exception of the one with the largest 

correlation coefficient. Thus, we obtain the final list of separated components annotated to the 

only one most similar pure component from the library. The number of pure components J stored 

in the library can in general be large, for example, J≈105 for the Wiley 1H NMR spectral library 

[11]. Herein, we used the in-house built library comprised of J=160 1H NMR spectra of pure 

components. The algorithm aEFM-EKM-mRKHS is summarized in Algorithm 1.  

Algorithm 1. Summary of the nonlinear single-mixture BSS algorithm: aEFM-EKM-mRKHS. 

Required: 

1
0

T×
+∈x  , D, { }2 2

1 ,..., Iσ σ  for the Gaussian kernel.  

1. Execute the Fast Fourier transform on x: ( )FFT=x X x . Scale 
X  to satisfy A3.  

2. Generate mappings ( ){ }2

1

I

i i
φ

=
X according to (12). 

3. Use the k-means algorithm to estimate bases { } 1

I
i i=

V  from 
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( ){ }2

1

I

i i
φ

=
X  in (12). 

4. Use the NMU algorithm to separate 1H NMR components spectra 
according to (17). 
5. Annotate separated analytes spectra with the pure components spectra 
from the library according to (18) and the succeeding paragraph. 

 

2.5 Criteria for evaluation of the separation and annotation quality 

After the separated components are annotated and ranked, the most desirable outcome is that the 

top M components on the ranking list correspond with the M pure components present in the 

mixture spectra. However, given that the large number of correlated pure components 1H NMR 

spectra ought to be separated from the only one nonlinear mixture spectra, it is certain that the 

quality of separation will be limited. Consequently, some number of separated components will 

be annotated incorrectly. Thus, we propose four criteria to validate separation and annotation 

results achieved by the proposed nonlinear single mixture BSS method. 

 

Criterion 1 (C1) counts the number of correctly annotated components out of M separated 

components ranked first on the list:  

 

   C1 # cI=         (20) 

 

where #Ic denotes cardinality of the index set Ic comprised of correctly annotated components 

among first M ranked separated components. If the separation is perfect, all first M separated 
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components would be annotated correctly. Hence, it applies for the cardinality of the set Ic: 

#Ic≤M. 

 

Criterion 2 (C2) stands for the penalized mean normalized correlation between the first M 

separated components and the pure components they are correctly annotated with: 

 

    ( )*
ˆC2 ,

c

i i j
i I

c M
∈

 
=  
 
∑ S S      (21) 

 

where Ic is defined previously. When all first M ranked separated components are annotated 

correctly we have #Ic=M and the penalized mean correlation, C2, equals the mean correlation.  

 

Criterion 3 (C3) stands for the penalized mean normalized correlation between all separated 

components and the pure components they are correctly annotated with: 

 

   ( )*
ˆC3 ,

c

i i j
i S

c L
∈

 
=  
 
∑ S S      (22) 

 



23 

 

where L stands for the number of all separated components. Sc denotes the index set of the 

correctly annotated components among all separated components. Hence, it applies for the 

cardinality of the set Sc: #Sc≤L. When all L separated components are annotated correctly we 

have #Sc=L. Then, the penalized mean correlation equals the mean correlation. Thus, the 

difference with respect to the C2 is that in the case of the C3 the whole space of latent variables 

is considered. Hence, it applies C2≤C3, and C2=C3 in the case of the perfect separation. For the 

aEFM-EKM-mRKHS algorithm, the overall dimensionality of the induced RKHSs is D×I. 

Hence, we want to benefit from mapping the original input mixture spectra onto multiple high-

dimensional RKHSs.   

 

Criterion 4 (C4) stands for the mean rank of correctly annotated separated components: 

 

 ( )1

equals position on ranking list, for 1 #
C4 s.t.

, for #
M i c

ii
i c

m i I
m R

m R I i M=

≤ ≤
=  = < ≤
∑  (23) 

 

where R equals dimensionality of the space of latent variables. As an example, for the aEFM-

EKM-mRKHS it applies R=D×I. C4 simultaneously takes into account two factors: (i) higher 

dimensionality of induced space increases the probability that all separated components will be 

annotated correctly; (ii) it penalizes annotated components with the large ranking indices in the 

latent space as well as those components that are not annotated at all. Thus, if separation is 

perfect and all first M ranked components are annotated correctly the value of C4 will be (very) 
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small, i.e. lim C4 0.
D→∞

=  Since with the increase of dimension of induced space the probability of 

both correct and incorrect annotation is increasing, the C4 is sensitive to (in)correct annotation 

related to dimension of induced spaces.  

 

 

3.0 Experiment and materials 

3.1 Recording of 1H NMR spectra of 160 pure components 

We have recorded the in-house library comprised of 1H NMR spectra of 160 pure components 

expected to correspond with the small organic molecules present particularly in urine samples of 

patients with diabetes type 2. Among pure components there were six pairs with amplitude 

spectra correlated above 0.9, eight pairs with correlation above 0.8, twelve pairs with correlation 

above 0.7, twenty-two pairs with correlation above 0.6, thirty-four with correlation above 0.5 and 

fifty-nine with correlation above 0.4. Thus, the spectral library contains many structurally similar 

components. Because of that, annotation is expected to be incorrect when separation quality is 

modest or poor. The library content is presented in Table S-3 of the Supplementary material. All 

measurements were performed on a Bruker AVANCE 600 MHz spectrometer, operating at 298 

K. Samples were dissolved in 700 µL phosphate buffer (100 mM, pH 7.2 prepared with D2O) 

prior to NMR measurement. 3-(Trimethylsilyl)-1-propanesulfonic acid sodium salt was used as 

an internal standard. Water suppression using excitation sculpting with gradients was applied 

[63]. 1H spectra at a spectral width of 6.700 Hz with 16K data points and a digital resolution of 
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0.41 Hz per point were measured with 64 scans (time delay 2 sec, acquisition time 1.22 sec, pulse 

with 90).  

 

3.2 1H NMR spectroscopy measurements of two model mixtures 

To validate method proposed for nonlinear BSS single mixture problem, two mixtures of five 

pure components were prepared in the laboratory. The compounds 4-aminoantipyrine (S1), 4-

aminobutyric acid (S2), allantoin (S3), cholic acid (S4) and naphtoic acid (S5) 30 mg of each, were 

mixed together. From the resulting crude mixture, 2 samples of 10 mg were taken and their NMR 

spectra were recorded for the pure components. Mixture X2 was used for validation of the single-

mixture nonlinear BSS method. Mixtures X1 and X2 were used for validation of the nonlinear 

BSS methods for separation of pure components from two mixtures. These methods as well as 

corresponding validation results are presented in the Supplementary material. 

  

3.3 Urine samples collection, preparation and 1H NMR spectroscopy measurements 

Urine aliquots were obtained from residual routine samples from 33 unrelated patients with 

diabetes type 2 (age range: 30 – 84 years; 17 males). Urine samples were collected in the 

morning, during the regular outpatient checkup in the clinical laboratory affiliated to the tertiary-

level diabetes clinic. Patients were categorized and treated according to the current World Health 

Organization (WHO) recommendations at the University Clinic Vuk Vrhovac, Zagreb, that is the 

WHO collaborating center for diabetes. The study protocol was approved by the institutional 

Ethics Committee and patients gave their written consent for usage of their residual samples. The 

group of control subjects included 30 healthy, unrelated consenting adult volunteers, matched for 
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age and sex to diabetic subjects. For each of them the glucose level was measured before taking 

of urine and they were all normoglycemic. All study subjects were Caucasians. Morning urine 

samples were stored at -200C until clean-up procedure that is performed by C18 SampliQ Solid 

Phase Extraction (SPE) (Agilent Technologies, USA). C18 polymer sorbents were first 

conditioned by passing MeOH (3x5 mL) and then equilibrated by passing QH2O (3x5 mL). Each 

urine sample (3x5 mL) was loaded into the column and a fraction was collected after cleaning in 

separate tubes.  All the steps were performed at a flow rate of 1 mL min−1. Thereafter, samples 

were frozen by immersion in liquid nitrogen followed by evaporation in the vacuum chamber of 

a freeze dryer to dryness (under controlled temperature and reduced pressure). 10 mg of each dry 

sample was further used for spectroscopic analysis. The NMR spectra of urine samples were 

recorded as described for the pure components. The single-mixture method aEFM-EKM-

mRKHS was applied to 33 1H NMR mixtures spectra of urine obtained from diabetic patients 

and 30 1H NMR mixtures spectra of urine collected from healthy controls. 

 

3.4 Software environment  

All the experiments were executed on a PC running under a 64-bits Windows 10 operating 

system with 256 GB of RAM using Intel Xeon CPU E5-2650 v4 2 processors and operating with 

a clock speed of 2.2 GHz. All codes are run using MATLAB 2017a environment. 

 

4. Results 

4.1 Blind separation and annotation of five correlated amplitude 1H NMR component spectra 

from one model 1H NMR mixture spectrum 
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As mentioned in section 3.2, mixture X2 was used for validation of the single-mixture nonlinear 

BSS methods. RKHSs induced with the Gaussian kernels with variances  { }2 1.0, 0.5, 0.1, 0.05iσ ∈  

were used to evaluate the single-mixture BSS algorithm. In addition to the aEFM-EKM-mRKHS 

algorithm, described in Algorithm 1, we also compared its single RKHS version (aEFM-EKM-

sRKHS), where RKHS was generated with the Gaussian kernel with the variance 2
1 1σ = . In 

addition to the single RKHS method based on the kernel k-means [64] estimation of the basis 

matrix V,  the aEFM-EKM-sRKHS-VRKHS, was also used for comparison. The RKHS was also 

generated with the Gaussian kernel with the variance 2
1 1σ = . There was not enough diversity in 

the EKMs (13) generated with smaller variances σ2<1, to estimate basis V using the kernel k-

means algorithm. Thus, it was not possible to formulate multiple RKHSs version of the 

algorithm with basis matrices estimated by the kernel k-means clustering. Table 1 summarizes 

separation and annotation results for dimension of induced RKHSs D=2000 in terms of the 

criteria C1 to C4. Furthermore, additional information on computation time, correlation 

coefficients and ranking of annotated components are also presented in Table 1. Corresponding 

results for dimensions D=100 and D=1000 are presented in Tables S-1 and S-2 in the 

Supplementary material. Only the dimension of the induced RKHSs equal to D=2000 enabled 

detection of three (out of five) pure components with all three BSS algorithms. Thereby, the 

aEFM-EKM-mRKHS has the best performance.  In the agreement with the "no free lunch 

theorem" this algorithm has the highest computational complexity.  It can also be seen from 

Table 1 that separated and annotated components are mostly not placed at the top of the ranking 

list. Thus, in the real world scenario related to the separation and annotation of metabolites from 

single 1H NMR mixture of a biological sample such as urine, an interpretation of the list of 

ranked annotated components by a domain expert will be necessary. 
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Table 1. Separation and annotation results from one 1H NMR mixture for dimension of induced 

RKHSs D=2000.  

 aEFM-

EKM-

mRKHS 

aEFM-EKM-

sRKHS 

aEFM- 

EKM-

sRKHS-

VRKHS 

C1 1 1 1 

C2 0.119 0.119 0.119 

C3 0.229 0.223 0.242 

C4 2.005 2.454 2.163 

Ranks and 
correlations 
of correctly 
annotated 

components   
1 to 5 

28:  0.2327 
1:    0.5925 
NOT FOUND 
NOT FOUND 
13:  0.3198 

634:    0.2072 
1:        0.5931 
1985:  0.0355 
NOT FOUND 
288:    0.2810 

276: 0.2594 
1: 0.5934 
NOT FOUND 
NOT FOUND 
48: 0.3572 

CPU time  42 915 s 24 261 s 26 583 s 
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4.2 Blind separation and annotation of correlated amplitude 1H NMR component spectra from 

one 1H NMR mixture spectrum of urine of diabetic and non-diabetic subjects 

We applied the aEFM-EKM-mRKHS algorithm to separate and annotate components present in 

the single 1H NMR spectra of 33 urine samples of patients with diabetes type 2 and 30 urine 

samples of healthy controls. Based on a discussion in section 4.1, the dimension of individual 

induced RKHSs was selected to be D=2000. We provide in Tables S-4 to S-66 in the 

Supplementary materials results of separation and annotation of 55 metabolites, expected to be 

related to diabetes type 2, obtained by means of the aEFM-EKM-mRKHS algorithm from each 

individual 1H NMR spectra. Summarized results for all 55 metabolites are presented in Table S-

67 in the Supplementary materials. The most prominent metabolites in samples from diabetic 

subjects, when compared to healthy controls, were urinary creatine, glutamic acid and 5-

hydroxyindoleacetic acid. Table 2 presents aggregate separation and annotation related 

performance measures: number of times detected, mean and median ranks in the latent space 

comprised of 160 pure components (size of the library) as well as mean and median correlation 

between separated and annotated pure components. It is seen from the correlation values that 

related nonlinear single mixture BSS problem is very hard. Nevertheless, metabolites such as 

urinary creatine, glutamic acid and 5-hydroxyindoleacetic acid are detected in practically all the 

spectra and are more distinguished in spectra of urine of patients with diabetes type 2. To support 

this statement we also present in Table 2 results of statistical significance analysis. Analysis was 

performed for the correlations coefficients between creatine, glutamic acid and 5-

hydroxyindoleacetic acid pure spectra and the corresponding component separated from diabetic 

and control groups. Since, the three metabolites were not detected in all the samples the length of 

compared vectors was determined by the number of times each metabolite was detected in the 
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control group. We performed one sided anova test, implemented in the MATLAB function 

anova1. The null hypothesis of the one sided anova test is that both vectors of correlation 

coefficients are drawn from the populations with the same mean. Thus, smaller probability (the p 

value) for the specific metabolite implies statistically more significant metabolite-related 

difference between diabetic and control groups. As seen in Table 2, the most prominent 

metabolite in this regard is glutamic acid. However, given the size of the test sample (number of 

patients tested), the p-values for creatine and 5-hydroxyindoleacetic acid are also reasonably 

small and emphasize difference between the diabetic and control groups. 

  

Table 2. Separation and annotation performance of metabolites urinary creatine, glutamic acid 

and 5-hydroxyindoleacetic acid. Metabolites were extracted by the aEFM-EKM-mRKHS 

algorithm from 1H NMR spectra of 33 urine samples of patients with diabetes type 2 and 30 urine 

samples of non-diabetic subjects. p-values were estimated for sequences of correlation 

coefficients corresponding with diabetic and control groups. 

Metabolite Number 

detected 

of times  

 

Mean 
rank 

/  Median 
rank 

Mean 
correlation  

/  Median 
correlation 

 

 33 diabetic 
patients 

30 
control 
subjects 

Diabetic 
patients 

Control 
subjects 

Diabetic 
patients 

Control 
subjects 

p-value of 
one sided 
ANOVA 

creatine 

32  30 10.78 / 7 

 

21.37 / 13 0.319 / 0.318 0.287 / 0.286 0.242 

glutamic acid 

32  29 20.93 /  8 

 

31.45 /21 0.274 / 0.299 

 

0.224 / 0.211 0.041 

5-
hydroxyindoleacetic 
acid 

32  30 31.5 / 15.5 

 

39.17 / 28 0.226 / 0.260 

 

0.194 / 0.193 0.118 
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5. Discussion 

Metabolomic studies of diabetes and metabolic syndrome, using both targeted and non-targeted 

approach by either mass spectrometry or 1H NMR spectroscopy, so far demonstrated the 

significant association of plasma branched chain amino acids: isoleucine, leucine and valine, as 

well as two aromatic amino acids: tyrosine and phenylalanine with the development of type 2 

diabetes [65]. Furthermore, lipidomic-oriented studies identified plasma glycine, 

lysophosphatidylcholine 18:2 and acetylcarnitine as predictors of prediabetes and type 2 diabetes, 

[66]. Several studies reported on the associations between various phospholipids, hexoses and 

metabolites generated from oxidative damage, such as 2-aminoadipic acid, with the incident 

diabetes [67, 68]. These plasma metabolites were linked to the organ-specific processes and 

pathways involved in the pathogenesis of the type 2 diabetes [65]. Urinary metabolic profiling in 

diabetes is less prominent. That is partly because of the complexity of matrix, containing 

approximately 3100 so far identified metabolites [69], and partly because of the limitations of the 

current methodology, both analytical and computational, in separation of the signals generated by 

structurally similar molecules. The nonlinear single-mixture BSS method proposed herein was 

able to distinguish 3 metabolites involved in diverse pathways relevant for diabetes pathogenesis: 

urinary creatine, glutamic acid and 5-hydroxyindoleacetic acid. Glutamic acid, in the form of its 

monosodium salt is a well-established neurotransmitter responsible for the synaptic plasticity. It 

has been hypothesized that abnormal glutamate homeostasis might contribute to diabetes 

pathogenesis by direct and indirect mechanisms mediating a progressive loss of insulin-

producing pancreatic β-cells [70]. Recent study provided evidence on an increased plasma 

glutamate level in diabetic patients and mice, as well as β-cell lines following short-term 
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exposure to high glucose in vitro. Enzymatic degradation of glutamate was able to normalize 

insulin secretion [71]. A toxic effect of an excess of glutamate in retinal cells was proposed as 

one of the mechanisms involved in the pathogenesis of diabetic retinopathy [72]. Thus, it seems 

that elevated level of glutamate plays a significant role in diabetes pathology. Urinary 5-

hydroxyindoleacetate (5-HIAA) is an established indicator of serotonin levels and is routinely 

used as a laboratory test for carcinoid tumor diagnosis. Serotonin, synthesized by tryptophane 

hydroxylation in the brainstem serves as a neurotransmitter involved in regulation of multiple 

physiological functions of the brain, such as behavior and learning, as well as appetite and 

glucose homeostasis. However, peripherally produced serotonin serves as a hormone, which is 

involved in the regulation of function of the organs involved in the metabolic homeostasis at both 

glucose and lipid level [73]. A process called serotonylation was identified as an important 

modulating mechanism of the insulin production and secretion within the β-cells [74]. It was 

reported that a high level of plasma 5-HIAA in the stage of metabolic syndrome indicates a 

deranged serotonin metabolism with a presumed significant role for the development of 

cardiovascular complications via serotonin-mediated enhanced platelet aggregation and 

vasoconstriction [75]. Furthermore, regarding diabetes, it was recently proposed that an increased 

plasma 5-HIAA level in diabetic patients may play a role in the pathogenesis of microvascular 

complications [76]. The accumulated body of evidence pinpoints serotonin as a potential 

therapeutic target for type 2 diabetes and obesity [77]. Creatine (N-methyl-N-guanyxlglycine) is 

an essential guanidine compound widely distributed throughout human cells, which is equally 

provided by dietary sources and endogenous synthesis from arginine and glycine [78]. 

Phosphorylated creatine serves as the major endogenous phosphagenic substrate necessary for 

ATP synthesis within pathway catalyzed by creatine kinase. Creatine depletion, either acquired or 

inherited, seems to affect a variety of organs, with muscle and brain being the most interesting 
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targets [79, 80]. Despite a pronounced popularity, presumed improvement of muscle mass and 

athletic performance by the oral supplementation of creatine remained ambiguous. However, the 

widespread use of creatine for fitness purposes demonstrated its safety in healthy adults [81]. It 

was recently proposed that creatine deficiency, due to the aging-related reduction of muscular 

mass, may be responsible for age-related neurodegenerative diseases. Thus, creatine 

supplementation has emerged as an interesting treatment approach for a variety of geriatric 

disorders [82]. Pleiotropic effects of creatine seem to go beyond the creatine-kinase system of 

energy metabolism and involve various metabolic pathways, including glucose homeostasis [83]. 

Studies carried out in newly-diagnosed patients with the type 2 diabetes demonstrated that short-

term oral ingestion of creatine elicited a reduction of plasma glucose which was equal to the 

effects obtained by two common oral antihyperglycaemic agents: sulfonylurea [84] and 

metformin [85]. As evidenced in the recent meta-analysis [86], longer-term supplementation of 

creatine yielded indeterminate results regarding glycemic control, but creatine supplementation 

could be regarded as an adjuvant nutritional therapy with hypoglycemic effects, particularly when 

used in combination with exercise. In vitro studies revealed that creatine was able to improve 

glucose-stimulate insulin release [87], as well as to facilitate translocation of muscular glucose 

transporter GLUT4 [88]. More recent research showed that AMPK signaling may be implicated 

in the GLUT4 effects of creatine supplementation on glucose uptake in the type 2 diabetes [90]. 

However, the mechanism(s) involved in the glucoregulatory action of creatine is far from being 

elucidated. Results of the present study indicate that urinary creatine secretion was significantly 

more pronounced in diabetic patients than healthy controls, which is a novel finding. Considering 

the evidence collected so far on the role of creatine on the glucose homeostasis, it could be 

speculated that type 2 diabetes may be associated with a disturbed utilization of creatine 

associated with an increased renal loss, possibly due to glomerular hyperfiltration, which is 
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commonly associated with diabetes [90]. In the pilot study conducted herein it is estimated that, 

based on one sided ANOVA test, glutamic acid, 5-HIAA and creatine discriminate between 

diabetic group and healthy control group with the p-values respectively equal to 0.0406, 0.1176 

and 0.2419. 

 

 

6. Conclusions 

Blind separation of structurally similar (overlapping) components from a small number of their 

nonlinear mixtures is a hard inverse problem. It becomes notoriously difficult when only a single 

mixture is available. Yet, separation of structurally similar components from a single nonlinear 

mixture (metabolic profiling) is of potentially high clinical relevance. Driven by this motivation, 

this paper presented a method for the nonlinear blind separation and annotation of components 

present in single 1H NMR amplitude mixture spectra. In addition to model (laboratory prepared) 

mixture, the method was tested on separation and annotation of metabolites present in urinary 

samples collected from patients with diabetes type 2 and healthy controls. The ability of the 

proposed method to identify metabolite-related differences between the groups, albeit in the very 

early pilot-stage, revealed an interesting and novel pattern of metabolic components within 

various pathways, which are known to be influenced by diabetes. In particular, the method 

pinpointed urinary creatine, glutamic acid and 5-hydroxyindoleacetic acid as the most prominent 

metabolites in samples from diabetic subjects, when compared to healthy controls. Since the 

presented study is at a pilot stage, our results do not allow any metabolic interpretation. However, 

our method was able to differentiate diabetic from non-diabetic subjects by identifying 
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potentially relevant metabolites depicting pathways relevant for diabetes pathology. Further 

studies are needed to validate this method in terms of obtaining reproducible and clinically 

relevant results. 
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Tables Captions 

 

Algorithm 1. Summary of the single-mixture nonlinear BSS algorithm aEFM-EKM-mRKHS. 

 

Table 1. Separation and annotation results from one 1H NMR mixture for dimension of induced 

RKHSs D=2000.  

 

Table 2. Separation and annotation performance of metabolites urinary creatine, glutamic acid 

and 5-hydroxyindoleacetic acid. Metabolites were extracted by the aEFM-EKM-mRKHS 

algorithm from 1H NMR spectra of 33 urine samples of patients with diabetes type 2 and 30 urine 

samples of non-diabetic subjects. p-values were estimated for for sequences of correlation 

coefficients corresponding with diabetic and control groups. 
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