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ABSTRACT: Because of its quantitative character and capability for high-
throughput screening, 1H nuclear magnetic resonance (NMR) spectroscopy is used
extensively in the profiling of biofluids such as urine and blood plasma. However, the
narrow frequency bandwidth of 1H NMR spectroscopy leads to a severe overlap of
the spectra of components present in the complex mixtures such as biofluids.
Therefore, 1H NMR-based metabolomics analysis is focused on targeted studies
related to concentrations of the small number of metabolites. Here, we propose a
library-based approach to quantify proportions of overlapping metabolites from 1H
NMR mixture spectra. The method boils down to the linear non-negative least
squares (NNLS) problem, whereas proportions of the pure components contained in
the library stand for the unknowns. The method is validated on an estimation of the
proportions of (i) the 78 pure spectra, presumably related to type 2 diabetes mellitus
(T2DM), from their synthetic linear mixture; (ii) metabolites present in 62 1H NMR
spectra of urine of subjects with T2DM and 62 1H NMR spectra of urine of control
subjects. In both cases, the in-house library of 210 pure component 1H NMR spectra represented the design matrix in the related
NNLS problem. The proposed method pinpoints 63 metabolites that in a statistically significant way discriminate the T2DM group
from the control group and 46 metabolites discriminating control from the T2DM group. For several T2DM-discriminative
metabolites, we prove their presence by independent analytical determination or by pointing out the corresponding findings in the
published literature.

■ INTRODUCTION

Metabolomics refers to the identifying and quantifying small-
molecule components (a.k.a. metabolites or pure components)
in complex biological mixtures.1 Detection and identification of
metabolites that discriminate between healthy and disease
states are the primary purposes of metabolomics.2 Due to its
quantitative and non-destructive character, time efficiency, and
robustness, 1H nuclear magnetic resonance (NMR) spectros-
copy is extensively used for metabolic profiling of biofluids
such as plasma,3 urine,4 or cerebral spinal fluid.5 However, the
narrow frequency bandwidth of 1H NMR spectroscopy causes
overlapping of the many resonances of metabolites present in
the mixtures. That represents a severe challenge to chemo-
metrics methods used in the identification of metabolites.6−12

Because the area under the NMR signal amplitude spectra is
directly proportional to the concentration, many methods for
detection and identification of metabolites are based on fitting
NMR signal spectra with a sum of model spectra of metabolites
known, or expected, to be present in a mixture.4,5,7,8,10 Such an
approach presumes that amplitude NMR mixture spectra are a
sum of amplitude NMR spectra of the pure components
present in the mixture. That, however, is correct only when the
spectra of the pure components do not overlap. In the case of
1H NMR spectroscopy, that is true only at the selected spectral

windows where the small number of metabolites is present. As
emphasized in ref 5, that is why the described approach is used
for metabolic profiling of the cerebrospinal fluid, and it is not
preferred for metabolic profiling of urine or blood. Instead of a
single NMR mixture spectra, it is sometimes possible to rely on
multiple mixture spectra and use multivariate data analysis
methods such as partial least squares,11 or blind source
separation (BSS).12 However, multivariate methods, such as
refs 11 and 12, presume a linear mixture model (LMM) of
non-negative amplitude NMR component spectra. That is
incorrect for the overlapping spectra.13 Thus, the BSS methods
for separation of the pure components are sensitive to the
overlap between their spectra.13−15 That is expected in the case
of metabolic profiling of biological samples where the number
of metabolites can reach several hundreds. As an example,
there are 458 metabolites identified in urine and 309 in
cerebrospinal fluid.6
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Herein, we propose the pure component library-based non-
negative least squares (NNLS) approach to estimate the
metabolites’ proportions present in a 1H NMR mixture
spectrum. The approach is motivated by the fact that the
identification of metabolites requires knowledge about pure
components expected to be present in the mixture.4,5,7−10,12−15

Hence, we have to assume that metabolites present in the
mixture are contained in the library. Due to its linear
response,12 1H NMR mixture signal is a linear combination
of 1H NMR signals associated with pure components. In
particular, as shown in Section 2, estimation of the proportions
boils down, in the absence of noise, to solving the system of
linear equations. Due to the presence of noise and non-
negativity of proportions, their estimation becomes the NNLS
problem.16 To validate the proposed approach, we built the in-
house library composed of 210 1H NMR pure components
spectra. Thereby, approximately 70 of them were expected to
be present in the urine of the subjects with the type 2 diabetes
mellitus (T2DM) and approximately another 50 of them are
urine associated. Table S1 in the Supporting Information
provides detailed information about the library content. Due to
the nonnegativity of the proportions, only additive combina-
tions of pure components are allowed to model the
experimental spectra. That is a strong constraint, and it
virtually eliminates the selection of the pure components from
the library that are not present in the mixture. The proposed
method is validated on the estimation of the proportions of: (i)
the 78 pure 1H NMR spectra of metabolites, presumed to be
related to T2DM, from their synthetic linear mixture
contaminated with the additive white Gaussian noise
(AWGN) of controlled power; (ii) metabolites present in 62
1H NMR spectra of urine of the subjects with T2DM and in 62
1H NMR spectra of urine of the control subjects. The
proposed method emphasized 63 metabolites in samples from
the subjects with T2DM. According to the Student’s t-test, p <
0.05, they had proportions statistically significantly higher from
those contained in the samples of the control subjects. The
proposed method also emphasized 46 metabolites in samples
from control subjects to have proportions statistically
significantly higher from those contained in the samples of
the subjects with T2DM.

■ THEORY
Linear Mixture Model of Multicomponent 1H NMR

Spectra. Due to its linear response, 1H NMR mixture signal is
linear combination of the pure components 1H NMR signals.
Thus, the model in the Fourier (chemical shift) domain in the
absence of additive noise reads out as

=x Sa (1)

where ∈ ×x T 1 represents one complex 1H NMR mixture
signal comprising values at T frequencies and  stands for the
set of complex numbers. ∈ +

×a M
0

1 stands for a vector of
proportions of the M pure components contained in the
library, and +0 denotes the set of non-negative real numbers.

∈ = { ∈ }× ×
= S S:T M

m
T

m
M1

1 is a library with the columns
representing 1H NMR signals of the metabolites in the Fourier
domain, where “=:” means “by definition.” We name non-
negative elements of the mixing vector a in 1 proportions as
opposed to concentrations in ref 12. As it is discussed in refs 8
and 10, concentrations of the pure components are directly
proportional to their amplitude spectra. However, LMM 1

does not hold in the amplitude domain when the pure
components’ spectra overlap.13 We assume that SI ⊆ S, where I
⊆ {1, ..., M} is a set of indexes of metabolites present in the
mixture x. Using the real parts of x and S in 1, we obtain the
real system of linear equations where the elements of a stand
for the unknown proportions

=x S aRe( ) Re( ) (2)

∈ ×xRe( ) T 1 represents the real part of 1H NMR mixture
signal, and ∈ ×SRe( ) T M represents real part of the library.
The system of linear eq 2 is exact, that is no approximations
were made. Thus, when the condition 3 is fulfilled

= MSrank(Re( )) (3)

the solution of 2 is unique and it is obtained as: a = [Re(S)]†x,
where [Re(S)]† stands for the pseudoinverse of Re(S). Model
2 holds when pure components and mixtures are acquired
under the same conditions. Otherwise, peak shifts will occur
and the model is not valid. Since in the reported experiments,
the urine samples and pure components were prepared and
acquired following the same protocol, described in detail in the
Experimental Section, the model 2 was valid. Thus, there was
no need for the peak alignment steps prior to the analysis.
Provided that the library is built taking into account
information related to the human metabolome,17 for example
urine-related metabolites identified by the human metabolome
project,18 it is realistic in untargeted metabolic studies to at
least approximately satisfy condition 3 (see Supporting
Information, S11−S13, for a more detailed discussion).

Proportion Estimation and the NNLS Problem.
Experimental recordings of the 1H NMR mixture spectra
include additive noise. Thus, 2 becomes

= +x S a nRe( ) Re( ) (4)

where n ∼ N(0,σ2) denotes the zero mean AWGN. Hence, the
solution of 4 is approximate. It is obtained by solving the
NNLS problem

̂ = −
≥

a x S amin
1
2

Re( ) Re( )
a 0 2

2

(5)

where a ̂ stands for the estimate of a and ∥◦∥22 denotes the
square of the 2 norm. Problem 5 is a convex quadratic
programming problem and has a globally optimal solution.
When the number of metabolites present in the mixture, #I, is
expected/known to be smaller than the library size M, it is
justified to further impose the sparsity constraint on a. By using
the 1-norm as a measure of sparsity, we obtain the 1
-regularized NNLS problem19

λ̂ = − +
≥

a x S a amin
1
2

Re( ) Re( )
a 0 2

2
1 (6)

where λ ≥ 0 is the regularization parameter. Instead of the 1
-norm, the 0-quasi-norm of a can be used as a measure of
sparsity, that is ∥a∥0 = #{am ≠ 0, m = 1,..., M}. The fast non-
negative orthogonal matching pursuit (FNNOMP) algo-
rithm,21 with the Matlab code available at ref 22, solves the
0-regularized optimization problem

̂ = −
≥

a x S amin
1
2

Re( ) Re( )
a

I I
0 2

2

I (7)
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where I stands for the support of a* assumed to be known a
priori. Proportions in percentage are obtained by scaling
solution of 5−7 by its 1-norm

̂ ← ̂
̂

a
a
a 1 (8)

As it is pointed out in ref 20, the nonnegativity constraint on
a in 5 is similarly effective as combined nonnegativity
constraint and explicit 1 regularization on a in 6. Regarding
robustness to noise, the most influential factors are the
correlations of the columns of Re(S) and the amount of
regularization.

■ EXPERIMENTAL SECTION
We recorded the in-house library comprising 1H NMR spectra
of 210 pure components expected to correspond with
metabolites. Thereby, around 120 pure components are
related to urine, whereas around 70 of them to the urine of
patients with T2DM. The library content is presented in Table
S1 of the Supporting Information. The library comprising the
first 160 pure components was described previously in ref 9.
The correlation structure of the library is discussed in the
Results section. The NNLS methods for proportions
estimation were applied to 1H NMR spectra of urine obtained
from 62 diabetic patients and to 1H NMR spectra of urine
collected from 62 healthy controls. All of the experiments were
executed on a PC running under a 64-bits Windows 10
operating system with 256 GB of RAM using Intel Xeon CPU
E5-2650 v4 2 processors and operating with a clock speed of
2.2 GHz. For the reason of comprehensiveness, we briefly
describe the protocol related to the recording of the 1H NMR
spectra of the pure components, collection of urine samples,
their preparation, and acquisition of their 1H NMR spectra.
The more detailed description is presented in the Supporting
Information (Pages S34−S36).
Recording of 1H NMR Spectra of 210 Pure

Components. All measurements were performed on a Bruker
AVANCE 600 MHz spectrometer, operating at 298 K. 5−10
mg of pure components were used for generating the library.
Samples were dissolved in 700 μL of phosphate buffer (100
mM, pH 7.2 prepared with D2O) prior to NMR measure-
ments. 3-(Trimethylsilyl)-1-propane sulfonic acid sodium salt
was used as an internal standard. We tested two water
suppression methods, WATERGATE and Water Suppression
by Excitation Sculpting23 on metabolites from different classes
(amino acids, carbohydrates, and nucleic acids) and also urine
samples. Revealed analysis of the obtained spectra brought us
to the selected Suppression by Excitation Sculpting method.
Urine Sample Collection, Preparation, and 1H NMR

Spectroscopy Measurements. Urine aliquots were obtained
from the residual routine samples from 62 unrelated patients
with T2DM (age range: 30−84 years). They were collected in
the morning, during the regular outpatient checkup in the
clinical laboratory affiliated to the tertiary-level diabetes clinic.
Patients were categorized and treated according to the current
World Health Organization (WHO) recommendations at the
University Clinic Vuk Vrhovac, Zagreb. The institutional
Ethics Committee approved the study protocol, and patients
gave their written consent for the usage of their residual
samples. The group of control subjects included 62 healthy,
unrelated consenting adult volunteers, matched for age and sex
to diabetic subjects. For each of them, the glucose level was

measured before taking urine, and they were all normoglyce-
mic. All study subjects were Caucasians. Morning urine
samples were stored at −200 °C until the clean-up procedure,
that is performed by C18 SampliQ Solid Phase Extraction
(Agilent Technologies, USA). C18 polymer sorbents were first
conditioned by passing MeOH (3 × 5 mL) and then
equilibrated by passing QH2O (3 × 5 mL). Each urine sample
(3 × 5 mL) was loaded into the column, and a fraction was
collected after cleaning in separate tubes. All of the steps were
performed at a flow rate of 1 mL min−1. After that, samples
were frozen by immersion in liquid nitrogen followed by
evaporation in the vacuum chamber of a freeze dryer to
dryness (under controlled temperature and reduced pressure).
10 mg of each dry sample was further used for spectroscopic
analysis. The NMR urine spectra were recorded, as described
in the previous section, related to the recording of pure
component spectra.

■ RESULTS
NNLS-Based Estimation of Proportions from a

Synthetic 1H NMR Mixture Spectrum. To select the most
suitable solver(s) for the problem at hand, we designed the
synthetic mixture such as 4. Thereby, the library S comprised
210 1H NMR spectra of pure components with the content
presented in Table S1. Proportions of 78 pure components,
that according to Table S1 were expected to be T2DM
relevant, were generated randomly according to the uniform
distribution on the (0, 1] interval. The number of pairs of the
subset of 78 spectra with the normalized correlation coefficient
(NCC) greater than or equal to: 0.2 was 82, 0.3 was 38, 0.5
was 12, and 0.7 was 2. The numbers of pairs with the
corresponding values of the NCC for the whole library were
381, 123, 29, and 5. Thus, many pure components in the
library were structurally similar, with the overlapping spectra.
In accordance with 4, the AWGN was generated with the
signal-to-noise (SNR) ratio in dB: SNR ∈ {0, 10, 20, 30, 40,
50, 60, “inf”}, where “inf” stands for no AWGN. We have
tested 11 solvers for the NNLS problem 4. They are elaborated
in the Supporting Information (Pages S13−S17). Matlab code
for most of these methods was downloaded from ref 24. For
each SNR value, we generated 100 realizations and estimated
the following figure of merits for each solver of the NNLS
problems 5−7: sensitivity, specificity, balanced accuracy, F1
score, positive predicted value (PPV), relative proportions
error, and the total fit of the spectrum. Mean values
(±standard deviations) of the logarithm of the relative
proportion errors and percentage of total fit of synthetic
spectrum and residuals are shown in Figures S1 to S3 in the
Supporting Information. Mean values (±standard deviations)
of the estimates of balanced accuracy, sensitivity, specificity, F1
score, and PPV are shown in Figures S4 to S8 in the
Supporting Information. It can be seen that for SNR ≥ 10 dB,
the Lawson Hanson (LH) method,16 the positive modification
of the LARS (PLARS) algorithm,19,20 the projected quasi-
Newton (PQN) algorithm,25 and the NNPINV + FNNOMP
yield consistent and accurate results by achieving less than 10%
of relative error and total fit greater than 95%. Figure 1 shows
the total fit for four mentioned NNLS methods as a function of
SNR. As shown in Figures 2 and S3, for SNR = 10 dB residuals
between the real part of clean synthetic spectrum and
approximations based on LH, PLARS, PQN, and NNPINV
+ FNNOMP methods are 50 times smaller in the amplitude
range than that of the spectrum itself. As shown in Table S2,
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the LH, the PQN, and the PLARS algorithms are also
computationally efficient (0.76, 0.83, and 0.91 s on the
described synthetic problem). Thus, the LH, the PQN, the
PLARS, and the NNPINV + FNNOMP algorithms were
selected for metabolic profiling of the 1H NMR spectra of
urine of the subjects with T2DM as well as of the control
subjects.
NNLS-Based Estimation of Proportions from a 1H

NMR Spectrum of Urine of T2DM and Control Subjects.
In accordance with the problems 5−7, we applied the LH, the
PLARS, the PQN, and the NNPINV + FNNOMP algorithms
to estimate proportions from 62 1H NMR spectra of urine of
patients with T2DM as well as from 62 1H NMR spectra of
urine of healthy controls. Afterward, estimated vectors of
proportions were scaled in accordance with 8. Scaled vectors of
proportions were stored column-wise in non-negative matrices
with dimensions 210 × 62: ÂLH

d , ÂLH
c , ÂPLARS

d , ÂPLARS
c , ÂPQN

d ,
ÂPQN
c ÂNNPINV + FNNOMP

d , and ÂNNPINV + FNNOMP
c . From diabetes-

related matrices, we selected components with the mean
proportion greater than the mean proportion in corresponding
control-related matrices. Thus, the index sets (ILH

d , IPLARS
d , IPQN

d ,
and INNPINV + FNNOMP

d ) of these components are obtained
according to

= { = ̂

> ̂ }

∈ {

+ }

I m A m

A m

1, ..., 210: mean( ( , : ))

mean( ( , : ))

method LH, PLARS, PQN, NNPINV

FNNOMP

d d

method
c

method method

(9)

From control-related matrices, we selected components with
the mean proportion greater than the mean proportion in
corresponding T2DM-related matrices. The index sets (ILH

c ,
IPLARS
c , IPQN

c , and INNPINV + FNNOMP
c ) of these components were

obtained analogously to 9. The Matlab notation and indexing
scheme have been assumed in 9. We are interested in finding
out whether pure components indexed by sets Imethods

d

discriminate the T2DM group from the control group in a
statistically significant way. Likewise, we are interested in
finding out whether pure components indexed by sets Imethods

c

discriminate the control group against the T2DM group in a
statistically significant way. Thus, we applied the two-sample
Student’s t-test, implemented with the Matlab function ttest2.
The function returns a decision for the null hypothesis that
proportions of the selected pure components from the T2DM
and control groups come from normal distributions with equal
means and unequal and unknown variances. Pure components
discriminate T2DM against the control group, and vice versa,
in a statistically significant way if the test rejects the null
hypothesis at the 5% significance level. Afterward, we
performed Benjamini−Hochberg correction, ref 26, of
obtained p-values with the false discovery rate (FDR) set to
0.05. The overall number of the null hypothesis equals to the
cardinalities of the sets ILH

c , IPLARS
c , IPQN

c , and INNPINV + FNNOMP
c

and sets ILH
d , IPLARS

d , IPQN
d , and INNPINV + FNNOMP

d . Tables S3 to S6
in the Supporting Information list the pure components
discriminative of the T2DM and control groups. Thereby,
proportions were respectively estimated with the LH, the
PLARS, the PQN, and the NNPINV + FNNOMP methods.
As can be seen, results obtained by the four methods are very
consistent. The final result, presented in Tables 1 and S7, is
obtained as the intersection of the corresponding results in
Tables S3 to S6. Herein, the number of the null hypothesis
used in the Benjamini−Hochberg correction equals the
cardinalities of the intersection sets. The T2DM-discriminative
group shown in Table 1 contains 63 (out of 210) pure
components. The control-discriminative group shown in Table
S7 contains 46 (out of 210) pure components.
Figure 3 shows the mean value (±standard deviation) of the

total fit of urine spectra for the T2DM group and the control
group for four selected NNLS methods. The total fits are
highly consistent and approximately amount to 12.44% ±
5.37% for the diabetic group and 8.40% ± 3.2% for the control
group. As described in Table S1, our in-house library contains
210 pure components, where 78 of them are expected to be
T2DM relevant. As shown in Tables 1 and S7, the four NNLS
methods agreed on 63 components from the library to be
T2DM-discriminative and on 46 components to be control-
discriminative. Given that the human metabolome project
identified 458 metabolites in the urine,18 63 T2DM-
discriminative components contribute to 13.76% of the overall

Figure 1. Mean values of the percentage of the total fit of the
synthetic spectrum (±standard deviations) vs the SNR values.

Figure 2. (a) Real part of the clean synthetic spectrum. (b) Residual
between the clean and fitted real part of synthetic spectra using the
LH NNLS algorithm for SNR = 10 dB.
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number of urine relevant metabolites. Likewise, 46 control-
discriminative components contribute to 10.04% of the overall
number of urine relevant metabolites. Thus, both numbers are
within the corresponding ranges of the estimated total fits of
the urine spectra. In other words, the estimated total fits
explain the urine spectra in the amounts possible with the
current version of our in-house library. For non-targeted

metabolomics analysis of urine, a library comprising 458
metabolites identified in the human metabolome project has to
be built.

■ DISCUSSION

Our in-house library-based NNLS approach to non-targeted
metabolic profiling led us to the list of 68 components that in a
statistically significant way discriminate T2DM against control
group (see Table 1). For several T2DM-discriminative
metabolites, we proved their presence by independent
analytical determination or by pointing out relations with the
corresponding findings in the published literature. In ref 27,
ASICS analysis of 1H NMR spectra of human urine of 50
patients with the T2DM and 84 healthy volunteers confirmed
results from Table 1 for allantoin, betaine, D-glucose, D-
mannose, 4-aminobutyric acid (GABA), and hippuric acid.
Furthermore, in ref 28, BATMAN and BAYESIL analysis of 1H
NMR spectra of urine of rats with the T2DM confirmed results
from Table 1 for allantoin, betaine, choline, D-glucose, D-
mannose, and urea. To this end, HPLC-MS analysis of urine
samples of patients with T2DM confirmed the presence of the
metabolites: thiamine, 2,5-dihydroxybenzoic acid (DHBA),
and hippuric acid (see Pages S35−S42 in the Supporting

Table 1. List of Pure Components (Metabolites) That in a Statistically Significant Way Discriminate T2DM from Control
Groupa

pure component p-value proportion [%] mean ± std pure component p-value proportion [%] mean ± std

2′-deoxyuridine 2.19 × 10−9 1.34 ± 1.26 glycogen 2.26 × 10−4 2.14 ± 1.44
glucose-1-phosphate 9.61 × 10−9 1.55 ± 1.54 D-mannose27,28 2.51 × 10−4 0.34 ± 0.53
2-furoic acid 4.77 × 10−8 0.14 ± 0.17 1,3-dihydroxyacetone 2.60 × 10−4 0.21 ± 0.17
2,5-diaminopimelic acid 5.55 × 10−8 0.99 ± 0.86 imidazole 3.45 × 10−4 0.17 ± 0.23
3-hydroxy-5-methohymandelic acid 1.21 × 10−7 0.32 ± 0.25 1,3-dihydroxyacetone 2.60 × 10−4 0.21 ± 0.17
Z-prolyl-phenylalanine 1.75 × 10−7 1.35 ± 1.62 creatine40 4.16 × 10−4 1.10 ± 1.46
quercetin 7.76 × 10−7 0.24 ± 0.22 beta alanine37 4.77 × 10−4 0.35 ± 0.48
asparagine37 1.28 × 10−6 0.53 ± 0.72 cinnamaldehyde 5.89 × 10−4 0.61 ± 0.83
4-methyl-2-oxovalenic-acid 2.23 × 10−6 0.08 ± 0.10 D-arabinose [5] 6.75 × 10−4 0.28 ± 0.38
ethanol 2.31 × 10−6 0.23 ± 0.32 Z-valyl-glycyl-glycine 7.38 × 10−4 0.30 ± 0.49
thiamine* 2.51 × 10−6 0.03 ± 0.03 thymol 8.29 × 10−4 0.03 ± 0.031
3-methylsalicyclic acid 5.63 × 10−6 0.15 ± 0.10 formic acid 8.45 × 10−4 0.64 ± 0.77
2′-deoxyinosine 7.11 × 10−6 1.04 ± 1.14 glutamine37 8.90 × 10−4 0.64 ± 0.67
4-aminobutyric acid (GABA)28 7.28 × 10−6 0.42 ± 0.62 biotin 1.46 × 10−3 0.39 ± 0.50
alloxan 1.26 × 10−5 0.11 ± 0.12 β fructose 1.66 × 10−3 0.43 ± 0.74
Z-Ser-OH 1.31 × 10−5 1.23 ± 1.37 D-glucose27,28 1.66 × 10−3 0.29 ± 0.85
hippuric acid27,28 * 1.88 × 10−5 0.07 ± 0.14 2-oxogularic acid 2.42 × 10−3 0.16 ± 0.38
vanillylmandelic acid 2.33 × 10−5 0.52 ± 0.29 3-methyladipic acid 2.70 × 10−3 0.178 ± 0.24
acetophenon 2.82 × 10−5 1.38 ± 1.89 carnitine 3.36 × 10−3 0.15 ± 0.20
cholic acid 2.96 × 10−5 0.71 ± 0.67 naphthoic acid 3.88 × 10−3 0.94 ± 1.12
Leu−Trp 5.75 × 10−5 0.761 ± 0.71 3-methylxanthine 4.15 × 10−3 0.53 ± 0.95
glycylglycine35 6.84 × 10−5 0.11 ± 0.22 3-aminoisobutyric acid 4.41 × 10−3 1.37 ± 2.20
ethionine 7.99 × 10−5 0.368 ± 0.45 S-methyl-L-cysteine 4.99 × 10−3 0.12 ± 0.20
betaine27,28 8.15 × 10−5 0.54 ± 0.80 threonine 6.37 × 10−3 0.327 ± 0.35
3-phenylpropionic acid 8.28 × 10−5 0.38 ± 0.69 D-glucosamine 6.46 × 10−3 1.07 ± 1.74
2,5-dihydroxybenzoic acid* 8.49 × 10−5 0.67 ± 0.70 urea 1.02 × 10−2 1.16 ± 1.78
maltose 1.08 × 10−4 0.88 ± 1.59 aspartic acid37 1.21 × 10−2 0.61 ± 0.98
Uric acid37 1.14 × 10−4 0.56 ± 0.54 2,3,4,6-tetramethyl-D-glucose 1.45 × 10−2 0.87 ± 0.96
allantoin27,28 1.20 × 10−4 0.03 ± 0.06 ribose 1.70 × 10−2 0.30 ± 0.50
2-ketobutyric acid 1.51 × 10−4 0.24 ± 0.25 4-acetamiclophenol 1.84 × 10−2 0.21 ± 0.33
adip acid 1.57 × 10−4 0.12 ± 0.16 p-hydrophenylpyric acid 1.95 × 10−2 0.29 ± 0.32
caprylic acid 2.21 × 10−4 0.45 ± 0.69 alpha-methylserine 2.05 × 10−2 0.13 ± 0.15
aReported p-values and proportions are based on estimations obtained by the LH algorithm. p-values were corrected according to the Benjamini−
Hochberg test with FDR = 0.05. [xx] indicates reference confirming corresponding metabolite. [*] indicates confirmation by HPLC-MS based
independent analytical determination.

Figure 3. Total fit of urine spectra for the T2DM group and control
group for four selected NNLS algorithms.
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Information for more details). An important approach to
diabetes treatment involves the regulation of postprandial
hyperglycemia by delaying glucose release into the blood-
stream using inhibitors for carbohydrate digesting enzymes
such as maltase.29 Therefore, this could explain the high
proportion of maltose found in the urine of diabetic patients
involved in our study.30 Glycogen serves as energy storage in
living organisms. It is cleaved by the enzyme glycogen
phosphorylase responsible for the production of glucose-1-
phosphate. Because of its polarity, glucose-1-phosphate cannot
cross cell membranes and must be involved in catabolism
within cells.31 Since glycogenolysis occurs in diabetes, its
product glucose-1-phosphate is expected to be associated with
diabetes in our study. DHBA is one of the tyrosine metabolism
products detected in our study with a significantly higher
proportion in the diabetic group. It has been shown that
DHBA inhibits low-density lipoprotein oxidation in hyper-
glycemic conditions describing its action as a free-radical
scavenger.32 By the method presented here, the remarkable
portion of phenylalanine-pathway metabolites (phenylalanine,
Z-prolyl-phenylalanine, hippuric acid, glycylglycine, and p-
hydrophenylpyric acid) is detected in urine of T2DM patients.
It follows the fact that the products of this metabolic pathway
can be excreted by the urine, indicating dysfunction in this
metabolic pathway and predicting both diabetes risk and
chronic kidney failure.33 Metabolites involved in the phenyl-
alanine pathway might also be mammalian-microbial co-
metabolites, such as is 4-hydroxyphenylpyruvic acid trans-
formed by intestinal microorganisms.34 An HPLC-MS study of
188 individuals with T2DM and 181 healthy controls
confirmed a statistically significant presence of glycylglycine
in urine samples of a T2DM group.35 In our study, several
metabolites of purine and pyrimidine pathways (3-methyl-
xanthine, 2-deoxyuridine, and so forth) were detected to
differentiate the T2DM group from the control group
significantly. Purine catabolism is an essential component of
the homeostatic response of mitochondria to oxidative stress.
It has been proved to be altered in the liver mitochondria of
diabetic rats.36 Glutamine, uric acid, and asparagine are
additional metabolites of purine/pyrimidine pathway pointed
as markers for discriminating the T2DM group in our study.
The study very relevant to our results has been reported in ref
37, where the amino acid concentrations were measured in
blood and urine collected from 100 patients with diabetes and
compared with the 100 healthy subjects. Urinary amino acids
with statistically significantly higher concentrations in the
diabetic group37 that coincide with the acids reported in our
study (Table 1) were asparagine, aspartic acid, glutamine, and
beta-alanine. In recent years, many experimental and clinical
data have accumulated the effects of the flavonoid quercetin on
the treatment of diabetes38 since humans can absorb significant
amounts of quercetin from food or supplements.39 The
significantly higher level of urinary creatine in patients with
T2DM was detected here by NNLS, reported in our previous
publication,9 and in ref 40.

■ CONCLUSIONS
Due to its quantitative character and time efficiency, 1H NMR
spectroscopy is used to investigate metabolic profiling of
biofluids. However, the narrow frequency bandwidth of 1H
NMR spectroscopy leads to the severe overlap of the
metabolites’ spectra in the complex mixtures such as urine or
blood plasma. Nevertheless, non-targeted metabolic profiling

of structurally similar metabolites from a complex mixture is of
potentially high clinical relevance. Driven by this motivation,
this paper presented a method for estimating the proportions
of the metabolites present in the 1H NMR spectrum of a
complex mixture. The method relies on a library of pure
component 1H NMR spectra and boils down to the NNLS
problem. As opposed to approaches that estimate concen-
trations from the amplitude spectra, the proposed method is, in
principle, insensitive to the overlapping of the spectra of the
pure components. In addition to the synthetic mixture, the
method was tested on metabolic profiling of 62 urine samples
collected from the subjects with T2DM as well as from 62
urine samples collected from the healthy controls. Thereby, the
in-house built library comprising 210 pure component 1H
NMR spectra was used as a design matrix in the related NNLS
problem. The proposed method emphasized 63 metabolites in
samples from the subjects with T2DM to have proportions
statistically significantly higher, p < 0.05 according to the
Student’s t-test, than those in the samples from the control
subjects. The proposed method also emphasized 46 pure
components in samples from control subjects to have
proportions statistically significantly higher than those in the
samples from the subjects with T2DM. In both cases,
discriminative components were discovered consistently by
the four NNLS solvers. For the many of the prominent
metabolites in the urine of patients with T2DM, we proved
their presence by independent analytical determination,
discussed their metabolic interpretation, or pointed out the
corresponding findings in the published literature.
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