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Aim To expand our previous findings by increasing the 
number of patients in a study characterizing medicinal 
signaling cells (MSC) of stromal vascular fraction from li-
poaspirate (SVF-LA) and from microfragmented lipoaspi-
rate (SVF-MLA) applied for the treatment of osteoarthritis 
(OA).

Methods Twenty OA patients, including 8 new patients, 
acquiring autologous microfragmented adipose tissue 
were enrolled. In-parallel immunophenotyping of SVF-LA 
and SVF-MLA was performed. The samples were incubat-
ed in a DuraClone SC prototype tube targeting the CD31, 
CD34, CD45, CD73, CD90, CD105, and CD146 surface mark-
ers, stained with the DRAQ7 cell nuclear dye and Live/Dead 
Yellow Fixable Stain, and analyzed by flow cytometry.

Results The population phenotypes in SVF-LA and SVF-
MLA samples included CD31+CD34+CD73±CD90±CD1
05±CD146± endothelial progenitors (EP), CD31+CD34-

CD73±CD90±CD105-CD146± mature endothelial cells, 
CD31-CD34-CD73±CD90+CD105-CD146+ pericytes, CD31-

CD34+CD73±CD90+CD105-CD146+ transitional pericytes, 
and CD31-CD34+CD73highCD90+CD105-CD146- supra-ad-
ventitial-adipose stromal cells. Compared with the autolo-
gous SVF-LA samples, the prevailing cell type in SVF-MLA 
were EP, which outnumbered leukocytes and supra-adven-
titial-adipose stromal cells (SA-ASC). The ratio of progeni-
tor cells in SVF-MLA samples differed between female and 
male patients, showing a higher EP-pericyte and pericyte-
SA-ASC ratio in men.

Conclusion Our results, hallmarked by EP-enriched anti-
inflammatory features and indicating a possible sex-specif-
ic impact, contribute to defining the cellular composition 
of the clinically applied MSC serving as a regenerative cell 
therapy in OA.
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Mesenchymal stromal/stem cells (MSC) are well known 
for their capability of differentiating into mesenchymal 
cell types. Caplan has recently suggested that they are 
renamed into medicinal signaling cells with the same ac-
ronym (1). The name ought to be adapted as our knowl-
edge of the biological concept has expanded: during 
tissue regeneration, MSC perform their function via sig-
naling rather by than differentiating – as they do under 
cell culture conditions (2-4). MSC comprise a heteroge-
neous population of stromal and stem cells with addi-
tional immunosuppressive and trophic properties, which 
upon injury or inflammation modulate the local environ-
ment by secreting numerous anti-apoptotic, anti-scar-
ing, angiogenic, and mitotic factors (1,5). This paradigm 
for tissue regeneration has been brought up by the stud-
ies of MSC in osteoarthritis (OA), the most common joint 
disorder (6). MSC from adipose tissue are now widely in-
vestigated as a novel therapeutic method in the treat-
ment of OA (7).

Although 20 years have passed since the first character-
ization of the multipotent MSC from adult adipose tissue, 
ie lipoaspirate (3), a complete characterization of this het-
erogeneous cell type remains elusive. This tremendous 
discovery opened up unprecedented possibilities in 
clinical application, however, undefined cellular hetero-
geneity and non-standardized protocols represent the 
main obstacle to the MSC usage in regenerative medi-
cine. Together with other cell types, MSC are found in the 
stromal vascular fraction (SVF), which is obtained from 
adipose tissue upon collagenase treatment. Besides be-
ing a fruitful source of MSC, adipose tissue seems to po-
tentiate the MSC-mediated tissue regeneration if it pre-
viously undergoes microfragmentation. The secretome 
of microfragmented adipose tissue more abundantly 
harbors cytokines and angiogenic factors, accompanied 
by immunomodulation, angiogenesis, and tissue repara-
tion benefits (8). In this new light of paracrine activity of 
microfragmented adipose tissue, the Lipogems® device 
brings innovative technology for processing autologous 
adipose tissue, producing small intact clusters of perivas-
cular microfragments with a high therapeutic potential 
(9,10). In a prospective non-randomized study, an intra-
articular injection of such a product led to a successful 
outcome, as revealed by an increased glycosaminoglycan 
content in the hyaline cartilage of the knee joint (11,12). 
Several studies of knee OA treatment demonstrated the 
efficacy of adipose MSC in tissue repair, and even a low-

dose MSC application yielded significant functional 
improvement with pain relief (13-15).

Although clinical implementation of microfragmented 
adipose tissue has brought an impressive step forward 
in orthopedics, standardization of clinical application re-
quires a better understanding of MSC heterogeneity and 
the cellular subset characterization. The flow cytometry 
analysis of human lipoaspirate has shown that a het-
erogeneous SVF mixture contains endothelial progeni-
tor (EP) cells (CD31+CD34+CD146+), endothelial mature 
(EM) cells (CD31+CD34-CD146±), pericytes (CD31-CD34-

CD146+), supra-adventitial-adipose stromal cells (SA-
ASC) (CD31-CD34+CD146-), and transitional pericytes (TP) 
(CD31-CD34+CD146+), with differential expression of the 
CD73, CD90, and CD105 mesenchymal markers (16,17). 
The aim of this study was to expand the number of pa-
tients from our previous immunophenotyping analysis 
of SVF from lipoaspirate (SVF-LA) or microfragmented 
lipoaspirate (SVF-MLA) by means of polychromatic flow 
cytometry (18). 

MATERIAL AND METHODS

Patients

We enrolled 8 new OA patients (4 women and 4 men) 
in addition to the previous 12 patients (6 women and 6 
men) (all aged 30-85) undergoing an intra-articular knee 
injection of autologous SVF-MLA in St. Catherine Specialty 
Hospital (Zagreb, Croatia) as previously described (11). The 
study was approved by the St. Catherine Specialty Hospital 
Institutional Review Board (EP 001/2016) and the Srebrnjak 
Children’s hospital Research Ethics Committee (11/2017). 
The SVF-LA and SVF-MLA patient samples transported to 
the Srebrnjak Children’s Hospital (Zagreb, Croatia) were 
stored overnight at room temperature (RT) protected from 
light before further processing (19,20).

SVF isolation

The SVF was obtained by treating the samples with 1% 
collagenase type I in D-MEM medium (both from Sigma-
Aldrich, Saint Louis, MO, USA) in a shaking bath at 37 °C 
for 45 minutes, accompanied by a 1:2 dilution with 2% fe-
tal bovine serum (Biosera, Nuaille, France) in the D-MEM 
medium (Sigma-Aldrich) for stopping the reaction. Fil-
tered through a 100 μm-cell strainer (BD Falcon, Corning, 
NY, USA), the samples were centrifuged (300 g for 10 min 
at RT) and the cell pellet was resuspended in 1 mL of the 
VersaLyse solution (Beckman Coulter, Miami, FL,USA) for a 
10-minute incubation. After another filtration through a 
40-μm cell strainer (BD Falcon, Corning), the samples were 
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centrifuged (300 g for 10 min at RT), and the cell pellet was 
resuspended in the D-MEM medium (Sigma-Aldrich). The 
Sysmex XT1800 hematology analyzer (Sysmex, Kobe, Ja-
pan) was used to count the cells.

Flow cytometry

The Duraclone SC dry reagent prototype tube (kindly pro-
vided by Beckman Coulter) was used for staining of the 
MSC subpopulation cell surface markers: CD31, CD34, 
CD45, CD73, CD90, CD105, CD146, labeled with PB, ECD, 
APC-AF750, PE, FITC, CD45-PC7, PC5.5 fluorochromes, re-
spectively, together with Live/Dead Yellow Fixable Stain 
(Thermo Fisher, Waltham, MA,USA). The samples were in-
cubated for 20 min at RT protected from light followed by 
fixation with 2% paraformaldehyde (Electron Microscopy 
Sciences, Hatfield, PA, USA) in PBS (Sigma-Aldrich). The 
samples were washed and permeabilized with PermWash 
(BD Biosciences, San Jose, CA, USA), and the cell nuclei 
were stained with the DRAQ7 dye (BioStatus, Shepshed, 
Leicestershire, UK). The FlowLogic software (Inivai Technol-
ogies, Mentone, Australia) and the Kaluza software (Beck-
man Coulter) were used to analyze the FCS data files.

Statistical analysis

The normality of distribution was tested with the 
D’Agostino-Pearson test. The paired t test or unpaired t test, 
or Wilcoxon test or Mann-Whitney test were used to test 
the differences between the groups. Our previously pub-
lished data sets were also included in the statistical analysis 
(n = 12) together with the new unpublished data obtained 
from additional patients (n = 8). A P value <0.05 was con-
sidered statistically significant. The analysis was performed 
with GraphPad Prism 9.2 for Windows (GraphPad Software, 
Inc., San Diego, CA, USA).

RESULTS

Polychromatic flow cytometry immunophenotyping of 
SVF-LA and SVF-MLA samples

Flow cytometry analysis of the SVF-LA or SVF-MLA coun-
terpart samples was undertaken with the gating proce-
dure (Figure 1). The singlet events chosen based on for-
ward scatter time of flight and forward scatter area as 
well as the Live/Dead Yellow staining (not shown) were 
used for the DRAQ7 staining selection (Figure 1A). For the 
flow cytometry analysis, DNA-binding dye was used to 
select only nucleated cells and avoid abundant interfer-

ence with oil drops, erythrocytes, and debris. Based on 
the CD45 expression, live nucleated cells were separat-
ed into the CD45- non-leukocyte and CD45+ leukocyte 
fraction (Figure 1B). Using the CD31, CD34 and CD146 
markers, in the non-leukocyte fraction we determined 
CD31+CD34− EM, CD31+CD34+ EP, and CD31− negative 
non-endothelial populations (Figure 1C), pericytes, TP, 
and SA-ASC (Figure 1D).

SVF-LA and SVF-MLA significantly differed in cell 
content

The heterogeneous cell content of SVF-MLA used for clini-
cal application was analyzed for the relative amount of the 
main populations and compared with the SVF-LA coun-
terpart (Figure 2). In SVF-MLA, the percentage of EP was 
significantly higher (Figure 2A), while the percentage of 

Figure 1. The gating procedure for flow cytometry analysis 
of the cellular content in the stromal vascular fraction derived 
from lipoaspirate or microfragmented lipoaspirate counter-
part. Single live cells (data not shown) were used to analyze 
nucleated cells using the DRAQ7 dye and side scatter (SSC) (A) 
and the CD45+ leukocyte and CD45− cell populations (B). Live 
nucleated CD45− cells were defined with the CD31 and CD34 
lineage markers and phenotyped as CD31+CD34− endothelial 
mature (EM), CD31+CD34+ endothelial progenitor (EP), and 
CD31− negative non-endothelial cells (C). The latter population 
was, in combination with the CD146 marker, further pheno-
typed as pericytes, transitional pericytes (TP), and supra-
adventitial-adipose stromal cells (SA-ASC) (D).
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SA-ASC or leukocytes (Figure 2B and 2D) was significantly 
lower, in respect to the total nucleated cells. Interestingly, 
the percentage of pericytes was patient-dependent and 
did not differ between SVF-LA and SVF-MLA (Figure 2C). 
As previously shown, EM and TP comprised a small por-
tion of the total nucleated cells (below 2%), which is why 
they were not included in the statistical analysis. These re-
sults supported our previous findings of the enrichment 
of the EP compartment in the clinically applied microfrag-
mented SVF.

For a deeper insight into the heterogeneous MSC sub-
populations, we compared the expression of the MSC-
characteristic markers on the progenitor cells between 
the SVF-LA and SVF-MLA samples (Figure 3). The expres-
sion of CD73, CD90, CD105, and CD146 on EP (Figure 3A, 
3E), pericytes (Figure 3B, 3F), SA-ASC (Figure 3C, 3G), and 
TP (Figure 3D, 3H) identified them as CD31+CD34+CD73±

CD90±CD105±CD146± EP, CD31−CD34−CD73±CD90+CD10
5−CD146+ pericytes, CD31−CD34+CD73highCD90+CD105−

CD146− SA-ASC, and CD31−CD34+CD73±CD90+CD105−C
D146+ TP, respectively. The phenotype of EM was deter-
mined as CD31+CD34−CD73±CD90±CD105−CD146± (not 
shown).

Sex-related differences in the stromal progenitor cell 
ratios

We were next interested in the ratio of the progenitor cells, 
which might be important for their in vivo interaction and 
local modulation upon an intra-articular injection. SVF-
MLA samples had significantly higher ratios of pericytes/
SA-ASC, EP/pericytes, and EP/SA-ASC than SVF-LA sam-
ples (Figure 4A-C). As we observed earlier, male samples 
showed significantly higher values than female samples, 
except for the EP/pericytes ratio (Figure 4D-F). Notably, 
one female patient’s data in Figure 3F was identified by the 
ROUT method as an outlier and was excluded from the sta-
tistical analysis.

DISCUSSION

This study strengthens our published results on the im-
munophenotyping of the SVF cell components from MLA 
previously proven to improve the outcome in patients 
with the late-stage knee OA (11,12). We described five 
CD45- subpopulations of SVF-LA and SVF-MLA of the fol-
lowing phenotypes: CD31+CD34+CD73±CD90±CD105±CD
146± EP cells, CD31+CD34-CD73±CD90±CD105-CD146± EM 

Figure 2. Differences in the four cell subpopulations before and after microfragmentation of lipoaspirate. The cell content of the 
stromal vascular fraction from lipoaspirate (SVF-LA) or microfragmented lipoaspirate (SVF-MLA) was calculated for endothelial 
progenitors (A), SA-ASC (B), pericytes, (C) and leukocytes (D) for each patient shown as a line. Statistical analysis was performed by 
using a paired t test (A, B, D) or Wilcoxon test (C). P value: (****) P < 0.0001; n = 20.
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cells, CD31-CD34-CD73±CD90+CD105-CD146+ pericytes, 
CD31-CD34+CD73±CD90+CD105-CD146+ TP, and CD31-

CD34+CD73highCD90+CD105-CD146- SA-ASC. The expres-
sion pattern of the MSC markers on TP resembles that of 
SA-ASC, to which they develop from pericytes (16).

Previous attempts focusing on the in situ origin and im-
munophenotyping of adipose tissue MSC have been hin-

dered by the fact they cannot be unambiguously identi-
fied by any current marker (21). In addition, many studies 
assessed the expression of a single marker, such as the per-
centage of the CD34-positive or CD146-positive popula-
tion within the nucleated CD45- cells. However, these are 
not population-specific markers but are markers shared by 
different subpopulations, and the cellular composition of 
SVF with the specific ratios remained undefined. Instead, 
a combination of different MSC-characteristic markers in a 
polychromatic flow cytometry analysis, which we applied, 

Figure 3. Expression analysis of the mesenchymal stem/
stromal cell-characteristic markers on the progenitor cells of 
the stromal vascular fraction from lipoaspirate (SVF-LA) (left 
panels) or microfragmented lipoaspirate (SVF-MLA) (right 
panels). Expression of the CD73, CD90, CD105, and CD146 
markers on endothelial progenitors (EP) (A, E), pericytes (B, 
F), supra adventitial-adipose stromal cells (SA-ASC) (C, G), and 
transitional pericytes (TP) (D, H). Data are expressed as radar 
plots of one patient with a more pronounced TP phenotype.

Figure 4. Ratio analysis of the progenitor cells in the stromal 
vascular fraction from lipoaspirate (SVF-LA) or microfrag-
mented lipoaspirate (SVF-MLA). The pericyte/SA-ASC ratio 
(A), the EP/pericyte ratio (B), and the EP/SA-ASC ratio (C) were 
calculated from the percentage of nucleated cells for each 
cell population (Figure 2). The data are expressed as symbols 
representing each patient with the group median, and the 
statistical analysis was performed with the Wilcoxon test (A-C). 
P values: (***) P < 0.001, (****) P < 0.0001; n = 20. Differences 
between female and male patients in the pericyte/SA-ASC 
ratio (D), the EP/pericyte ratio (E), and the EP/SA-ASC ratio (F) 
in SVF-MLA samples. The data are expressed as symbols rep-
resenting each female patient (n = 10) or male patient (n = 10) 
with the group mean (D, F) or median (E). Statistical analysis 
was performed with the unpaired t test (D, F) or Mann-Whitney 
test (E). P values: (*) P < 0.05, (**) P < 0.01.
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provides a better insight. A similar analytical approach to 
ours was applied by Vezzani (8) and Zimmerlin (17).

Although SA-ASC and pericytes might not share a com-
mon origin (22), they are widely presumed to be the in 
vivo progenitors of MSC (23,24). However, we observed 
EP to be the most abundant progenitor cell type in SVF-
MLA, which accounted for the most fruitful enrichment 
after microftagmentation. Interestingly, the percentage 
of pericytes did not depend on lipoaspirate processing 
and was unchanged after microfragmentation. Applied 
as an autologous cell therapy in patients with late-stage 
knee OA, SVF-MLA improved the outcome even in pa-
tients initially considered for a knee replacement surgery 
(12). The notion that the clinically applied SVF-MLA was 
abundantly enriched in EP cells has implications for their 
role in the MLA-mediated cartilage improvement. EP are 
bone marrow-descendent unipotent progenitor cells ca-
pable of differentiating to endothelial cells, as well as to 
contribute in a paracrine manner to the process of vascu-
larization necessary for tissue regeneration (25,26). Their 
pericyte origin has also been proposed (17). Co-cultures 
of EP and MSC have a synergistic effect in angiogenesis 
and bone regeneration (27,28) as well as in differentiation 
commitment (29-31). Experiments using adipose tissue 
MSC and bone marrow EP have shown that these co-cul-
tures generated more bone and cartilage (32), upregulat-
ed osteogenesis-related and angiogenesis-related gene 
expression (33), and in animal models accelerated bone 
defect repair (33). Extensive in vitro and in vivo research 
has thus highlighted vasculogenic and proangiogenic ef-
fects resulting from the MSC-EP cross-talk (34-36). These 
studies have identified several ways of MSC-EP commu-
nication, including a direct contact, and interactions via 
soluble factors or extracellular vesicles (37-39). Therefore, 
it is reasonable to suspect that MSC in interactions with 
EP exert their medicinal action and perhaps mediate the 
observed cartilage regeneration after injection of microf-
ragmented SVF. In line with the previous reports (10), we 
observed a decrease in CD45+ leukocytes in SVF-MLA. 
MSC are known for their anti-inflammatory action, and a 
reduction of proinflammatory elements in the microfrag-
mented mixture most likely contributes to the MSC effects 
at the site of injury.

Interestingly, we found that women and men had differ-
ent pericyte/SA-ASC and EP/SA-ASC ratios, which im-
plicates the influence of sex hormones. Similar to our 

finding, Vezzani et al (8) also documented a pericyte 
domination over SA-ASC that resulted from mi-

crofragmentation. Their study involved only women, 
and these results were similar to our data from female 
patients. In our study, EP and pericytes as the two most 
dominant populations of the microfragmented product 
did not show sex-related variations. Women and men dif-
fer in fat composition and stores, and adipose tissue-de-
rived stem cells from men are characterized by a faster 
proliferation or stronger osteogenesis than those from 
women (40-42). Women with a higher plasma estrogen 
concentration have higher levels of circulating EP, which 
can, together with MSC, in a paracrine manner mediate 
the estrogen effects (43). However, although the sex-re-
lated discrepancies that we observed appear to be very 
significant, the study was performed on a small number 
of patients and the results are yet to be confirmed in a 
broader study with a larger number of patients. Addition-
ally, the association with the clinical outcome after intra-
articular knee injection of autologous SVF-MLA in men 
and women needs to be assessed.

In conclusion, since SVF-MLA is used therapeutically in OA 
patients the results of this study may contribute to the bio-
logical understanding of the cartilage regeneration. Here 
we successfully used the Duraclone SC Mes¬enchymal 
tubes for the SVF immunophenotyping and confirmed a 
marked increase in EP in microfragmented ad¬ipose tis-
sue. The fact that SVF-MLA was enriched in EP cell popu-
lation, with a concomitant reduction of leukocytes, might 
help in explaining its anti-inflammatory and regen¬erative 
properties in OA joint healing.
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